首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Mach-Zender interferometer with a Gaussian number-difference squeezed input state can exhibit sub-shot-noise phase resolution over a large phase interval. We derive the optimal level of squeezing for a given phase interval Deltatheta{0} and particle number N. We then propose an adaptive measurement sequence in which the amount of squeezing is increased with each measurement. With this scheme, any phase on (-Deltatheta{0},Deltatheta{0}) can be measured with a precision of 3.5/N, requiring only 2-4 measurements, provided only that Ntan(Deltatheta{0})<10{40}. In a double-well Bose-Einstein condensate, the optimized input states can be created by adiabatic manipulation of the ground state.  相似文献   

2.
We derive a general phase-matching condition(PMC) for enhancement of sensitivity in SU(1,1) interferometers. Under this condition, the quantum Fisher information(QFI) of two-mode SU(1,1) interferometry becomes maximal with respect to the relative phase of two modes, for the case of an arbitrary state in one input port and an even(odd) state in the other port, and the phase sensitivity is enhanced. We also find that optimal parameters can let the QFI in some areas achieve the Heisenberg limit for both pure and mixed initial states. As examples, we consider several input states: coherent and even coherent states, squeezed vacuum and even coherent states, squeezed thermal and even coherent states. Furthermore, in the realistic scenario of the photon loss channel, we investigate the effect of photon losses on QFI with numerical studies. We find the PMC remains unchanged and is not affected by the transmission coefficients for the above input states. Our results suggest that the PMC can exist in various kinds of interferometers and the phase-matching is robust to even strong photon losses.  相似文献   

3.
陈坤  陈树新  吴德伟  杨春燕  苗强 《中国物理 B》2017,26(9):94212-094212
Sagnac effect enhancement can improve optical gyro precision. For a certain input intensity, we suggest that the other input port of beam splitter(BS) should be fed with some quantum light to break through shot noise limit(SNL) to improve Sagnac effect without increasing radiation-pressure noise(NRP). We design a Sagnac effect quantum enhancement criterion(SQEC) to judge whether some quantum light can enhance Sagnac effect and present a Sagnac effect enhancement scheme that utilizing Fock state light and parity measurement technique to extract the output phase. The results of the theoretical analysis show that the maximum sensitivity can be reached at θ = 0, and the phase precision can break through SNL and even achieve Heisenberg limit(HL). When the Fock state average photon number n is far less than coherent state, the minimum measurable angular rate is improved with (2n+1)~(1/2) times, which can deduce shot noise and increase NRP little.  相似文献   

4.
《Physics letters. A》2020,384(29):126755
We propose a theoretical scheme of an enhanced phase sensitivity by introducing a nonlinear phase shifter to the nonconventional interferometer consisting of a balanced beam splitter (BBS) and an optical parameter amplifier (OPA), a modified nonlinear interferometer (MNI). Then we use coherent state and even coherent state as inputs and homodyne detection at one output port of the MNI for phase sensitivity, both without and with photon losses. We find that the nonlinear phase shifter can not only improve phase sensitivity, but also significantly resist the decoherence from photon losses. In comparison to both the BBS+OPA scheme with linear phase shifter and the traditional Mach–Zehnder interferometer with nonlinear one, the phase sensitivity of the MNI scheme shows the best performance. It is interesting that the nonlinear phase shifter can stimulate potential of the OPA, although there is no improvement in signal-to-noise ratio beyond standard quantum limit for the BBS+OPA scheme with a linear phase shifter.  相似文献   

5.
We study the phase sensitivity of an SU(1,1) interferometer with two input beams in the displaced squeezed vacuum state and the coherent state, respectively. We find that there exists an optimal squeezing fraction of the displaced squeezed vacuum state that optimizes the phase sensitivity. We also examine the effects of some factors, including the loss, mean photon number of the input beams and amplitude gain of the optical parameter amplifiers, on the optimal squeezing fraction so that we can choose the optimal values to enhance the phase sensitivity.  相似文献   

6.
龚乾坤  李栋  袁春华  区泽宇  张卫平 《中国物理 B》2017,26(9):94205-094205
We theoretically study the quantum Fisher information(QFI) of the SU(1,1) interferometer with phase shifts in two arms by coherent ? squeezed vacuum state input, and give the comparison with the result of phase shift only in one arm.Different from the traditional Mach–Zehnder interferometer, the QFI of single-arm case for an SU(1,1) interferometer can be slightly higher or lower than that of two-arm case, which depends on the intensities of the two arms of the interferometer.For coherent ? squeezed vacuum state input with a fixed mean photon number, the optimal sensitivity is achieved with a squeezed vacuum input in one mode and the vacuum input in the other.  相似文献   

7.
We derive analytical expressions for the single mode quantum field state at the individual output ports of a beam splitter when a single-photon Fock state and a coherent state are incident on the input ports. The output states turn out to be a statistical mixture between a displaced Fock state and a coherent state. Consequently we are able to find an analytical expression for the corresponding Wigner function. Because of the generality of our calculations the obtained results are valid for all passive and lossless optical four port devices. We show further how the results can be adapted to the case of the Mach-Zehnder interferometer. In addition we consider the case for which the single-photon Fock state is replaced with a general input state: a coherent input state displaces each general quantum state at the output port of a beam splitter with the displacement parameter being the amplitude of the coherent state.  相似文献   

8.
陈坤  陈树新  吴德伟  杨春燕  吴昊 《物理学报》2016,65(5):54203-054203
利用量子技术增强Sagnac效应提高陀螺输出精度具有重要的研究意义, 是实现全自主导航的重要途径. 以相干态激光作为输入光源的光学陀螺因真空零点波动使其输出精度限制于散粒噪声极限而难以提高. 为减小真空波动的影响, 提出在激光输入的分束器的另一输入端输入压缩真空光并结合平衡零拍探测技术的方法增强Sagnac效应. 理论分析表明Sagnac效应性能得到有效提升: 干涉输出的灵敏度检测极限和动态范围均随着压缩程度的增加而呈指数级增长. 该方法只需对经典光学陀螺做少量改动就可实现, 是提高光学陀螺输出精度的一种新方法.  相似文献   

9.
We present evidence that the insulator-to-metal transition in La(1-x)Ca(x)MnO3 near x approximately 0.2 is driven by the suppression of coherent Jahn-Teller distortions, originating from d-type orbital ordering. The orbital-ordered state is characterized by large long-range Q2 distortions below T(O'- O*). Above T(O'- O*) we find evidence for coexistence between an orbital-ordered and an orbital-disordered state. This behavior is discussed in terms of electronic phase separation in an orbital-ordered insulating and an orbital-disordered metallic state.  相似文献   

10.
Both the negativity of Wigner function and the phase sensitivity of an SU(1,1) interferometer are investigated in this paper. In the case that the even coherent state and squeezed vacuum state are input into the interferometer, the Heisenberg limit can be approached with parity detection. At the same time, the negativity volume of Wigner function of detection mode comes entirely from the input state and varies periodically with the encoding phase. In addition, the negativity volume of Wigner function is positively correlated with the phase sensitivity of the SU(1,1) interferometer. The positive correlation may mean that the non-classicality indicated by negative Wigner function is a kind of resource that can verify some related research results of phase estimation.  相似文献   

11.
徐学翔  张英孔  张浩亮  陈媛媛 《物理学报》2013,62(11):114204-114204
根据量子力学相干态表象下的Wigner函数公式, 推导了N00N态在相空间的Wigner分布函数的解析表达式. 基于相空间方法, 研究N00N态作为输入的量子干涉. 推导了与输入光场参数和干涉仪参数相关的输出端探测光子概率的解析表达式, 并进行了数值分析. 从分析结果发现, 当相移参数φ取0和π时, 输出量子态仍为N00N态. 当输入2002态时, 输出结果总是2002态, 与相移参数无关. 随着N的增加, 条件概率随相位的分布峰数一般只有一个, 两个, 三个或四个, 且峰变得更窄. 这些结果可以为实验提供理论指导. 关键词: N00N态 Wigner函数 相空间 量子干涉  相似文献   

12.
光子增减叠加相干态在热环境中的退相干   总被引:3,自引:0,他引:3       下载免费PDF全文
张浩亮  贾芳  徐学翔  郭琴  陶向阳  胡利云 《物理学报》2013,62(1):14208-014208
研究了由光子增减叠加操作作用于相干态而得量子态的非经典性及其在热环境中的退相干问题.通过解析导出了Mandel's Q参数、光子数分布、Wigner函数等,讨论其非经典性.研究表明一阶光子增减相干叠加相干态在相空间总是取负值,只要满足条件∣2z* +α-α*∣2<1.基于Wigner函数的演化积分公式,解析地推导出了在热环境中Wigner函数的简洁表达式.研究首次表明:如果κt<1/2ln[(2(η)+2)/(2(η)+1)]得以满足,一阶光子增减相干叠加相干态在相空间最小值点处Wigner函数分布总存在负部.此外,根据Wigner函数负部体积讨论了其非经典特性.  相似文献   

13.
We derive the optimal N-photon two-mode input state for obtaining an estimate straight phi of the phase difference between two arms of an interferometer. For an optimal measurement [B. C. Sanders and G. J. Milburn, Phys. Rev. Lett. 75, 2944 (1995)], it yields a variance (Deltastraight phi)(2) approximately pi(2)/N2, compared to O(N-1) or O(N-1/2) for states considered by previous authors. Such a measurement cannot be realized by counting photons in the interferometer outputs. However, we introduce an adaptive measurement scheme that can be thus realized, and show that it yields a variance in straight phi very close to that from an optimal measurement.  相似文献   

14.
We present a theory of the transmission of guided matter-waves through Sagnac interferometers. Interferometer configurations with only one input and one output port have a property similar to the phase rigidity observed in the transmission through Aharonov-Bohm interferometers in coherent mesoscopic electronics. This property enables their operation with incoherent matter-wave sources. High rotation sensitivity is predicted for high finesse configurations.  相似文献   

15.
We study a Mach-Zehnder interferometer fed by a coherent state in one input port and vacuum in the other. We explore a Bayesian phase estimation strategy to demonstrate that it is possible to achieve the standard quantum limit independently from the true value of the phase shift and specific assumptions on the noise of the interferometer. We have been able to implement the protocol by using parallel operation of two photon-number-resolving detectors and multiphoton coincidence logic electronics at the output ports of a weakly illuminated Mach-Zehnder interferometer. This protocol is unbiased, saturates the Cramer-Rao phase uncertainty bound, and, therefore, is an optimal phase estimation strategy.  相似文献   

16.
The arterial input function (AIF) is important for quantitative MR imaging perfusion experiments employing Gd contrast agents. This study compared the accuracy of T(2)*-weighted magnitude and phase imaging for noninvasive measurement of the AIF in the rat aorta. Twenty-eight in vivo experiments were performed involving simultaneous arterial blood sampling and MR imaging following Gd injection. In vitro experiments were also performed to confirm the in vivo results. At 1.89 T and TE=3 ms, the relationship between changes in 1/T(2)* in blood (estimated from MR signal magnitude) and Gd concentration ([Gd]) was measured to be approximately 19 s(-1) mM(-1), while that between phase and [Gd] was approximately 0.19 rad mM(-1). Both of these values are consistent with previously published results. The in vivo phase data had approximately half as much scatter with respect to [Gd] than the in vivo magnitude data (r(2)=.34 vs. r(2)=.17, respectively). This is likely due to the fact that the estimated change in 1/T(2)* is more sensitive than the phase to a variety of factors such as partial volume effects and T(1) weighting. Therefore, this study indicates that phase imaging may be a preferred method for measuring the AIF in the rat aorta compared to T(2)*-weighted magnitude imaging.  相似文献   

17.
Wigner function of coherent state of N components   总被引:2,自引:0,他引:2       下载免费PDF全文
叶永华  曾高坚 《中国物理》2007,16(6):1554-1558
In this paper, we study the Wigner function of coherent state of N components, especially two components and three components. This function consists of two terms: the Gaussian term and the interference term with the negativity. The first term comprises N Gaussian surfaces evenly centred on a circle of radius |β| = |α| with a separate angle of 2π/N, and the second term is composed of 1/2N(N - 1) Gaussian-cosine surfaces evenly centred in a circular region of radius |β| 〈 |α|. Here, a is the eigenvalue of the annihilation operator α, and β is a variable in some complex space in which the Wigner function is defined. We have proved that the essential condition to eliminate the negativity of the Wigner function is that the mean photon count of the coherent state is equal to that of the Glouber coherent state.  相似文献   

18.
In terms of the coherent state evolution in phase space,we present a quantum mechanical version of the classical Liouville theorem.The evolution of the coherent state from |z>to|sz-rz*> corresponds to the motion from a point z(q,p) to another point sz-rz* with |s|2-|r|2=1.The evolution is governed by the so-called Fresnel operator U(s,r) that was recently proposed in quantum optics theory,which classically corresponds to the matrix optics law and the optical Fresnel transformation,and obeys group product rules.In other words,we can recapitulate the Liouville theorem in the context of quantum mechanics by virtue of coherent state evolution in phase space,which seems to be a combination of quantum statistics and quantum optics.  相似文献   

19.
We have embedded an artificial atom, a superconducting transmon qubit, in an open transmission line and investigated the strong scattering of incident microwave photons (~6 GHz). When an input coherent state, with an average photon number N?1 is on resonance with the artificial atom, we observe extinction of up to 99.6% in the forward propagating field. We use two-tone spectroscopy to study scattering from excited states and we observe electromagnetically induced transparency (EIT). We then use EIT to make a single-photon router, where we can control to what output port an incoming signal is delivered. The maximum on-off ratio is around 99% with a rise and fall time on the order of nanoseconds, consistent with theoretical expectations. The router can easily be extended to have multiple output ports and it can be viewed as a rudimentary quantum node, an important step towards building quantum information networks.  相似文献   

20.
We report the first observation of coherent magnetic excitations in a spin ladder system NaV2O5 by using femtosecond time-domain spectroscopy. A pronounced coherent oscillation is observed at 127 cm(-1) (nearly twice the spin gap energy) and assigned to a two-magnon bound state, based on the temperature dependence of the intensity below the charge ordering phase transition at T(C) = 34 K. This mode can be observable only when circularly polarized light is used as a pump or a probe beam, suggesting that it corresponds to a spin-flip excitation from the singlet ground state. A phonon mode strongly coupled to the spin state is also found at 303 cm(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号