首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
We present a variational wave function which explains the behavior of the supersolid state formed by hard-core bosons on the triangular lattice. The wave function is a linear superposition of only and all configurations minimizing the repulsion between the bosons (which it thus implements as a hard constraint). Its properties can be evaluated exactly--in particular, the variational minimization of the energy yields (i) the surprising and initially controversial spontaneous density deviation from half-filling (ii) a quantitatively accurate estimate of the corresponding density wave (solid) order parameter.  相似文献   

2.
We consider the interplay of the elastic pinning and the Anderson localization in the transport properties of a charge-density wave in one dimension, within the framework of the Luttinger model in the limit of strong repulsion. We address a conceptually important issue of which of the two disorder-induced phenomena limits the mobility more effectively. We argue that the interplay of the classical and quantum effects in transport of a very rigid charge-density wave is quite nontrivial: the quantum localization sets in at a temperature much smaller than the pinning temperature, whereas the quantum localization length is much smaller than the pinning length.  相似文献   

3.
We study the interplay of Mott localization, geometric frustration, and superfluidity for hard-core bosons with nearest-neighbor repulsion on the triangular lattice. For this model at half filling, we demonstrate that superfluidity survives for arbitrarily large repulsion, and that diagonal solid order emerges in the strongly correlated regime from an order-by-disorder mechanism. This is thus an unusual example of a stable supersolid phase of hard-core lattice bosons at a commensurate filling.  相似文献   

4.
We present an exact analytical solution of the fundamental system of quasi-one-dimensional spin-1 bosons with infinite delta repulsion. The eigenfunctions are constructed from the wave functions of noninteracting spinless fermions, based on Girardeau's Fermi-Bose mapping. We show that the spinor bosons behave like a compound of noninteracting spinless fermions and noninteracting distinguishable spins. This duality is especially reflected in the spin densities and the energy spectrum. We find that the momentum distribution of the eigenstates depends on the symmetry of the spin function. Furthermore, we discuss the splitting of the ground state multiplet in the regime of large but finite repulsion.  相似文献   

5.
We develop an analytical many-body wave function to accurately describe the crossover of a one-dimensional bosonic system from weak to strong interactions in a harmonic trap. The explicit wave function, which is based on the exact two-body states, consists of symmetric multiple products of the corresponding parabolic cylinder functions and respects the analytically known limits of zero and infinite repulsion for arbitrary number of particles. For intermediate interaction strengths we demonstrate that the energies, as well as the reduced densities of first and second order, are in excellent agreement with large scale numerical calculations.  相似文献   

6.
We perform a detailed analysis of the band structure, phonon dispersion, and electron-phonon coupling of three types of small-radius carbon nanotubes (CNTs): (5,0), (6,0), and (5,5) with diameters 3.9, 4.7, and 6.8 Å respectively. The large curvature of the (5,0) CNTs makes them metallic with a large density of states at the Fermi energy. The density of states is also strongly enhanced for the (6,0) CNTs compared to the results obtained from the zone-folding method. For the (5,5) CNTs the electron-phonon interaction is dominated by the in-plane optical phonons, while for the ultrasmall (5,0) and (6,0) CNTs the main coupling is to the out-of-plane optical phonon modes. We calculate electron-phonon interaction strengths for all three types of CNTs and analyze possible instabilities toward superconducting and charge-density wave phases. For the smallest (5,0) nanotube, in the mean-field approximation and neglecting Coulomb interactions, we find that the charge-density wave transition temperature greatly exceeds the superconducting one. When we include a realistic model of the Coulomb interaction we find that the charge-density wave is suppressed to very low temperatures, making superconductivity dominant with the mean-field transition temperature around one K. For the (6,0) nanotube the charge-density wave dominates even with the inclusion of Coulomb interactions and we find the mean-field transition temperature to be around five Kelvin. We find that the larger radius (5,5) nanotube is stable against superconducting and charge-density wave orders at all realistic temperatures.  相似文献   

7.
The linear response function for external fields with arbitrary space-time dependence is calculated for various systems in thermal equilibrium. First we derive the general expressions for free fermions and bosons. In particular the superconducting properties of free bosons are investigated. Secondly the influence of a weak repulsion between the bosons on their superconducting properties is investigated. Finally the response function for electrons with the BCS Hamiltonian is calculated exactly in the strong coupling limit.  相似文献   

8.
We use time- and angle-resolved photoemission spectroscopy with sub-30-fs extreme-ultraviolet pulses to map the time- and momentum-dependent electronic structure of photoexcited 1T-TaS(2). This compound is a two-dimensional Mott insulator with charge-density wave ordering. Charge order, evidenced by splitting between occupied subbands at the Brillouin zone boundary, melts well before the lattice responds. This challenges the view of a charge-density wave caused by electron-phonon coupling and Fermi-surface nesting alone, and suggests that electronic correlations play a key role in driving charge order.  相似文献   

9.
The role of quantum statistics in the decay dynamics of a multi-particle state, which is suddenly released from a confining potential, is investigated. For an initially confined double particle state, the exact dynamics is presented for both bosons and fermions. The time-evolution of the probability to measure two-particle is evaluated and some counterintuitive features are discussed. For instance, it is shown that although there is a higher chance of finding the two bosons (as oppose to fermions, and even distinguishable particles) at the initial trap region, there is a higher chance (higher than fermions) of finding them on two opposite sides of the trap as if the repulsion between bosons is higher than the repulsion between fermions. The results are demonstrated by numerical simulations and are calculated analytically in the short-time approximation. Furthermore, experimental validation is suggested.  相似文献   

10.
We study the formation of the charge-density wave long-range order in a system of repulsive 1D electrons coupled to 3D phonons. We show that the charge-density wave can be stabilized by interaction with phonons in quasi-1D crystals and semiconducting nanowires. In the case of metallic atomic chains, interaction with phonons of a 3D substrate is not enough, and violation of the translational invariance by commensurable perturbation or disorder is needed. The possibility of stabilization of superconductivity in 1D electrons with attraction by means of tunnel coupling to a 3D metal is considered.  相似文献   

11.
We investigate the dispersion of the charge carrier plasmon in the three prototypical charge-density wave bearing transition-metal dichalcogenides 2H-TaSe(2), 2H-TaS(2), and 2H-NbSe(2) employing electron energy-loss spectroscopy. For all three compounds the plasmon dispersion is found to be negative for small momentum transfers. This is in contrast with the generic behavior observed in simple metals as well as the related system 2H-NbS(2), which does not exhibit charge order. We present a semiclassical Ginzburg-Landau model which accounts for these observations, and argue that the vicinity to a charge ordered state is thus reflected in the properties of the collective excitations.  相似文献   

12.
We present a theory for the localization of three-dimensional vortex lines or two-dimensional bosons with a short-ranged repulsive interaction which are competing for a single columnar defect or potential well. For two vortices we use a necklace model approach to find a new kind of delocalization transition between two different states with a single bound particle. This exchange-delocalization transition is characterized by the onset of vortex exchange on the defect for sufficiently weak vortex-vortex repulsion or sufficiently weak binding energy corresponding to high temperature. We calculate the transition point and order of the exchange-delocalization transition. A generalization of this transition to an arbitrary vortex number is proposed.  相似文献   

13.
We show that one-dimensional binary mixtures of bosons or of a boson and a spin-polarized fermion are Luttinger liquids with the following instabilities: (i) For different particle densities, strong attraction between the mixture components leads to collapse, while strong repulsion leads to demixing, and (ii) For a low-density mixture of two gases of impenetrable bosons (or a spin-polarized fermion and an impenetrable boson) of equal densities, the system develops a gap and exhibits enhanced pairing fluctuations when there is attraction between the components. In the boson-fermion mixture, the pairing fluctuations occur at finite momentum. Our conclusions apply to mixtures both on the continuum and on optical lattices away from integer or fractional commensurability.  相似文献   

14.
We study the robustness, against the leakage of bosons, of wave functions of interacting many bosons confined in a finite box by deriving and analyzing a general equation of motion for the reduced density operator. We identify a robust wave function that remains a pure state, whereas other wave functions, such as the Bogoliubov's ground state and the ground state with a fixed number of bosons, evolve into mixed states. Although these states all have the off-diagonal long-range order, and the same energy, we argue that only the robust state is realized as a macroscopic quantum state.  相似文献   

15.
We study the ground states of cold atoms in the tight-binding bands built from p orbitals on a two dimensional honeycomb optical lattice. The band structure includes two completely flat bands. Exact many-body ground states with on-site repulsion can be found at low particle densities, for both fermions and bosons. We find crystalline order at n=1/6 with a sqrt[3] x sqrt[3] structure breaking a number of discrete lattice symmetries. In fermionic systems, if the repulsion is strong enough, we find the bonding strength becomes dimerized at n=1/2. Experimental signatures of crystalline order can be detected through the noise correlations in time of flight experiments.  相似文献   

16.
We study the effects of random scatterers on the ground state of the one-dimensional Lieb-Liniger model of interacting bosons on the unit interval. We prove that, in the Gross-Pitaevskii limit, Bose Einstein condensation takes place in the whole parameter range considered. The character of the wave function of the condensate, however, depends in an essential way on the interplay between randomness and the strength of the two-body interaction. For low density of scatterers or strong interactions the wave function extends over the whole interval. High density of scatterers and weak interaction, on the other hand, leads to localization of the wave function in a fragmented subset of the unit interval.  相似文献   

17.
A high resolution coherent x-ray diffraction experiment has been performed on the charge-density wave (CDW) system K0.3MoO3. The 2kF satellite reflection associated with the CDW has been measured with respect to external dc currents. In the sliding regime, the 2kF satellite reflection displays secondary satellites along the chain axis which corresponds to correlations up to the micrometer scale. This super long-range order is 1500 times larger than the CDW period itself. This new type of electronic correlation seems inherent to the collective dynamics of electrons in charge-density wave systems. Several scenarios are discussed.  相似文献   

18.
X-ray scattering measurements of the low-temperature structure of La(1-x)Sr(1+x)MnO(4) ( 0.33< or =x< or =0.67) indicate the existence of three distinct regions: a disordered phase (x<0.4), a charge-ordered phase (x> or =0.5), and a mixed phase (0.4< or =x<0.5). For x>0.5, the modulation vector associated with the charge order is incommensurate with the lattice and depends linearly on the concentration of e(g) electrons. The primary superlattice reflections are strongly suppressed along the modulation direction and the higher harmonics are weak, implying the existence of a largely transverse and nearly sinusoidal structural distortion, consistent with a charge-density wave of the e(g) electrons.  相似文献   

19.
We show that the dynamical melting of a Mott insulator in a three-dimensional lattice leads to condensation at nonzero momenta, a phenomenon that can be used to generate strongly interacting atom lasers in optical lattices. For infinite on-site repulsion, the case considered here, the momenta at which bosons condense are determined analytically and found to have a simple dependence on the hopping amplitudes. The occupation of the condensates is shown to scale linearly with the total number of atoms in the initial Mott insulator. Our results are obtained by using a Gutzwiller-type mean-field approach, gauged against exact-diagonalization solutions of small systems.  相似文献   

20.
At low temperature TiSe2 undergoes a charge-density wave instability. Superconductivity is stabilized either by pressure or by Cu intercalation. We show that the pressure phase diagram of TiSe2 is well described by first-principles calculations. At pressures smaller than 4 GPa charge-density wave ordering occurs, in agreement with experiments. At larger pressures the disappearing of the charge-density wave is due to a stiffening of the short-range force constants and not to the variation of nesting with pressure. Finally, we show that the behavior of T(c) as a function of pressure is entirely determined by the electron-phonon interaction without need of invoking excitonic mechanisms. Our work demonstrates that phase diagrams with competing orders and a superconducting dome are also obtained in the framework of the electron-phonon interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号