首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent structural and computational studies have shed new light on the catalytic mechanism and active site structure of the RNA cleaving hammerhead ribozyme. Consequently, specific ribozyme functional groups have been hypothesized to be directly involved in general/acid base catalysis. In order to test this hypothesis, we have developed an affinity label to identify the functional general base in the S. mansoni hammerhead ribozyme. The ribozyme was reacted with a substrate analogue bearing a 2'-bromoacetamide group in place of the nucleophilic 2'-hydroxyl group which would normally be deprotonated by a general base. The electrophilic 2'-bromoacetamide group is poised to alkylate the general base, which is subsequently identified by footprinting analysis. Herein, we demonstrate alkylation of N1 of G12 in the hammerhead ribozyme in a pH and [Mg(2+)] dependent manner that is consistent with the native cleavage reaction. These results provide substantial evidence that deprotonated N1 of G12 functions directly as a general base in the hammerhead ribozyme; moreover, our experiments provide evidence that the pKa of G12 is perturbed downward in the context of the active site structure. We also observed other pH-independent alkylations, which do not appear to reflect the catalytic mechanism, but offer further insight into ribozyme conformation and structure.  相似文献   

2.
An extended hammerhead ribozyme derived from Schistosoma mansoni, including conserved loops in stems I and II, has been examined to directly monitor the relationship between docking of loops and its activity using site-directed spin labeling (SDSL) and EPR spectroscopy. Dynamics with EPR spectroscopy and fast-quench kinetics measurements have shown that the docking of stems I and II occurs at low Mg2+ concentrations ([Mg2+]1/2,dock = 0.7 mM, 0.1 M NaCl), but a much weaker Mg2+ interaction ([Mg2+]1/2,cat approximately 90 mM) increases activity to very high maximum rates of approximately 1 s-1 at 0.1 M Na+ and pH 7.0.  相似文献   

3.
Molecular dynamics simulations have been performed to investigate the role of Mg2+ in the full-length hammerhead ribozyme cleavage reaction. In particular, the aim of this work is to characterize the binding mode and conformational events that give rise to catalytically active conformations and stabilization of the transition state. Toward this end, a series of eight 12 ns molecular dynamics simulations have been performed with different divalent metal binding occupations for the reactant, early and late transition state using recently developed force field parameters for metal ions and reactive intermediates in RNA catalysis. In addition, hybrid QM/MM calculations of the early and late transition state were performed to study the proton-transfer step in general acid catalysis that is facilitated by the catalytic Mg2+ ion. The simulations suggest that Mg2+ is profoundly involved in the hammerhead ribozyme mechanism both at structural and catalytic levels. Binding of Mg2+ in the active site plays a key structural role in the stabilization of stem I and II and to facilitate formation of near attack conformations and interactions between the nucleophile and G12, the implicated general base catalyst. In the transition state, Mg2+ binds in a bridging position where it stabilizes the accumulated charge of the leaving group while interacting with the 2'OH of G8, the implicated general acid catalyst. The QM/MM simulations provide support that, in the late transition state, the 2'OH of G8 can transfer a proton to the leaving group while directly coordinating the bridging Mg2+ ion. The present study provides evidence for the role of Mg2+ in hammerhead ribozyme catalysis. The proposed simulation model reconciles the interpretation of available experimental structural and biochemical data, and provides a starting point for more detailed investigation of the chemical reaction path with combined QM/MM methods.  相似文献   

4.
Cold denaturation is a thermodynamic phenomenon resulting from a difference in the heat capacities, DeltaCp, of the folded and unfolded states of a macromolecule. Whereas this phenomenon has been extensively studied in proteins, it has been thought not to occur in nucleic acids due to a negligible DeltaCp of folding. Questioning the validity of this assumption, the low-temperature structure of the hammerhead ribozyme, a small catalytic RNA, was investigated by circular dichroism spectroscopy. In the presence of 10 mM Mg2+ at pH 5.0 and 40% methanol, a cold unfolding event likely corresponding to tertiary structure loss was observed with a Tm of -20 degrees C. In 500 mM NaCl at pH 6.6, and 40% methanol, large-scale unfolding of the ribozyme at both hot (Tm = 53 degrees C) and cold (Tm = -1 degrees C) temperatures occurred. Fitting of these data to a two-state model allowed determination of DeltaCp = 3.4 kJ mol-1 K-1, corresponding to >/=0.18 kJ K-1 (mol base pair)-1, in good agreement with recently published calorimetric values for DNA duplexes. These results constitute the first direct observation of cold denaturation of a nucleic acid, and point to the importance of DeltaCp terms in the thermodynamics of nucleic acid folding.  相似文献   

5.
Although the structure of the hammerhead ribozyme is well characterized, many questions remain about its catalytic mechanism. Extensive evidence suggests the necessity of a conformational change en route to the transition state. We report a steric interference modification approach for investigating this change. By placing large 2' modifications at residues insensitive to structurally conservative 2'-deoxy modifications, we hoped to discover structural effects distal to the site of modification. Of twenty residues tested, six were identified where the addition of 2' bulk inhibits cleavage, even though these bulky modifications could be accommodated in the crystal structure without steric clash. It is proposed that these 2'-modifications inhibit cleavage by preventing formation of the alternate, active conformation. Since these 2' effects are present in both domain I and domain II of the hammerhead, the entire catalytic core must undergo conformational changes during catalysis.  相似文献   

6.
The hammerhead ribozyme is a small RNA motif that catalyzes the cleavage and ligation of RNA. The well-studied minimal hammerhead motif is inactive under physiological conditions and requires high Mg(2+) concentrations for efficient cleavage. In contrast, natural hammerheads are active under physiological conditions and contain motifs outside the catalytic core that lower the requirement for Mg(2+). Single-turnover kinetics were used here to characterize the Mg(2+) and pH dependence for cleavage of a trans-cleaving construct of the Schistosoma mansoni natural hammerhead ribozyme. Compared to the minimal hammerhead motif, the natural Schistosoma ribozyme requires 100-fold less Mg(2+) to achieve a cleavage rate of 1 min(-1). The improved catalysis results from tertiary interactions between loops in stems I and II and likely arises from increasing the population of the active conformation. Under optimum pH and Mg(2+) conditions this ribozyme cleaves at over 870 min(-1) at 25 degrees C, further demonstrating the impressive catalytic power of this ribozyme.  相似文献   

7.
A series of ten 60 ns molecular dynamics (MD) simulations of the native and mutated full length hammerhead ribozymes in the reactant state and in an activated precursor state (G8:2'OH deprotonated) are reported. Mutant simulations include the C3U, G8A, and G8I single mutants and a C3U/G8A double mutant that exhibits an experimental rescue effect. The results provide critical details into the origin of the observed mutation effects and support a mechanism where the 2'OH of G8 acts as a general acid catalyst that is held in position through Watson-Crick hydrogen bonding between G8 and C3.  相似文献   

8.
We constructed a modified form of the VS ribozyme containing an imidazole ring in place of adenine at position 756. The novel ribozyme is active in both cleavage and ligation reactions. The reaction is efficient, although relatively slow. The results are consistent with a role for nucleobase catalysis in the catalytic mechanism of this ribozyme.  相似文献   

9.
Abstract

The stabilization energy for the secondary structures of wild-type hammerhead and mutant ribozymes has been calculated at different salt conditions and temperatures by using the thermodynamic parameters for RNA structure prediction. The most stable structure at each condition has been searched and the obtained secondary structure is compared with the structure suggested phylogenetically or experimentally. The results indicate that the hammerhead-type secondary structure of the ribozyme and its reactivity correlate with each other. The multibranched loop containing the self-cleavage site of the ribozyme particularly should be a key structure in the hammerhead ribozyme reaction. The predicted secondary structures also suggest that the reactivity of the hammerhead ribozyme should be very much lower at 10°C than that at 37°C.  相似文献   

10.
《Chemistry & biology》1998,5(11):R277-R283
Aminoglycoside antibiotics inhibit protein biosynthesis and various ribozymes. Structural electrostatic complementarity can explain the inhibition mechanism of the hammerhead ribozyme: positively charged ammonium groups match the negatively charged metalion-binding pockets created by the RNA fold's electrostatic field.  相似文献   

11.
A computational comparison of the Diels-Alder reaction of a maleimide and an anthracene in water and the active site of the ribozyme Diels-Alderase is reported. During the course of the catalyzed reaction, the maleimide is held in the hydrophobic pocket while the anthracene approaches to the maleimide through the back passage of the active site. The active site is so narrow that the anthracene has to adopt a tilted approach angle toward maleimide. The conformation of the active site changes marginally at different states of the reaction. Active site dynamics contribution to catalysis has been ruled out. The active site stabilizes the product more than the transition state (TS). The reaction coordinates of the ribozyme reaction in TS, RC1-CD1 and RC4-CD2, are 2.35 and 2.33 A, respectively, compared to 2.37 and 2.36 A in water. The approach angle of anthracene toward maleimide is twisted by 18 degrees in the TS structure of ribozyme reaction while no twisted angle is found in TS of the reaction in water. The free energy barriers for reactions in both ribozyme and water were obtained by umbrella sampling combined with SCCDFTB/MM. The calculated free energy barriers for the ribozyme and water reactions are in good agreement with the experimental values. As expected, Mulliken charges of the atoms involved in the ribozyme reaction change in a similar manner as that of the reaction in water. The proficiency of the Diels-Alder ribozyme reaction originates from the active site holding the two reactants in reactive conformations, in which the reacting atoms are brought together in van der Waals distances and reactants approach to each other at an appropriate angle.  相似文献   

12.
We describe the allosteric control of Diels-Alder reactions by a small organic effector, theophylline. This is achieved by converting a Diels-Alder ribozyme into an allosterically regulated system. In contrast to other published systems, we have a bond-forming reaction with two small-molecule substrates and multiple turnover. This system could be very attractive for the development of assays for a variety of analytes and can be regarded as a prototype of fully synthetic signaling cascades.  相似文献   

13.
Catalytic promiscuity, the ability of an enzyme to catalyze alternative reactions, has been suggested to have played an important role in the evolution of new catalytic activities in protein enzymes. Similarly, promiscuous activities may have been advantageous in an earlier RNA world. The Tetrahymena Group I ribozyme naturally catalyzes the site-specific guanosine attack on an anionic phosphate diester and has been shown to also catalyze aminoacyl transfer to water, albeit with a small rate acceleration (<10-fold). This inefficient catalysis could be due to the differences in charge and/or geometry requirements for the two reactions. Herein, we describe a new promiscuous activity of this ribozyme, the site-specific guanosine attack on a neutral phosphonate diester. This alternative substrate lacks the negative charge at the reaction center but, in contrast to the aminoacyl substrate, can undergo nucleophilic attack with the same geometry as the natural substrate. Our results show that the neutral phosphonate reaction is catalyzed about 1 x 106-fold, substantially better than the acyl transfer but far below the normal anionic substrate. We conclude that both charge and geometry are important factors for catalysis of the normal reaction and that promiscuous catalytic activities of ribozymes could have been created or enhanced by reorienting and swapping RNA domains.  相似文献   

14.
《Chemistry & biology》1997,4(8):619-630
Background: Hairpin ribozymes (RNA enzymes) catalyze the same chemical reaction as ribonuclease A and yet RNAs do not usually have functional groups analogous to the catalytically essential histidine and lysine sidechains of protein ribonucleases. Some RNA enzymes appear to recruit metal ions to act as Lewis acids in charge stabilization and metal-bound hydroxide for general base catalysis, but it has been reported that the hairpin ribozyme functions in the presence of metal ion chelators. This led us to investigate whether the hairpin ribozyme exploits a metal-ion-independent catalytic strategy.Results: Substitution of sulfur for nonbridging oxygens of the reactive phosphate of the hairpin ribozyme has small, stereospecific and metal-ionindependent effects on cleavage and ligation mediated by this ribozyme. Cobalt hexammine, an exchange-inert metal complex, supports full hairpin ribozyme activity, and the ribozyme's catalytic rate constants display only a shallow dependence on pH.Conclusions: Direct metal ion coordination to phosphate oxygens is not essential for hairpin ribozyme catalysis and metal-bound hydroxide does not serve as the general base in this catalysis. Several models might account for the unusual pH and metal ion independence: hairpin cleavage and ligation might be limited by a slow conformational change; a pH-independent or metalcation-independent chemical step, such as breaking the 5′ oxygen-phosphorus bond, might be rate determining; or finally, functional groups within the ribozyme might participate directly in catalytic chemistry. Whichever the case, the hairpin ribozyme appears to employ a unique strategy for RNA catalysis.  相似文献   

15.
16.
The glmS ribozyme is a catalytic riboswitch that is activated for endonucleolytic cleavage by the coenzyme glucosamine-6-phosphate. Using kinetic assays and X-ray crystallography, we identify an active-site mutation of a conserved guanine that abolishes catalysis without perturbing coenzyme binding. Our results provide evidence that coenzyme function requires a specific nucleobase to interact with the nucleophile of the cleavage reaction.  相似文献   

17.
The kinetics of the alkaline hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) have been studied in aqueous DMSO, dioxane, and MeCN. In all solvent mixtures the reaction rate steadily decreases to half of its value in pure water in the range of 0-70 vol % of organic cosolvent and sharply increases in mixtures with lower water content. Correlations based on different scales of solvent empirical parameters failed to describe the solvent effect in this system, but it can be satisfactorily treated in terms of a simplified stepwise solvent-exchange model. Alkali metal ions catalyze the BNPP hydrolysis but do not affect the rate of hydrolysis of neutral phosphotriester p-nitrophenyl diphenyl phosphate in DMSO-rich mixtures. The catalytic activity decreases in the order Li+ > Na+ > K+ > Rb+ > Cs+. For all cations except Na+, the reaction rate is first-order in metal ion. With Na+, both first- and second-order kinetics in metal ions are observed. Binding constants of cations to the dianionic transition state of BNPP alkaline hydrolysis are of the same order of magnitude and show a similar trend as their binding constants to p-nitrophenyl phosphate dianion employed as a transition-state model. The appearance of alkali metal ion catalysis in a medium, which solvates metal ions stronger than water, is attributed to the increased affinity of cations to dianions, which undergo a strong destabilization in the presence of an aprotic dipolar cosolvent.  相似文献   

18.
Active-site guanines that occupy similar positions have been proposed to serve as general base catalysts in hammerhead, hairpin, and glmS ribozymes, but no specific roles for these guanines have been demonstrated conclusively. Structural studies place G33(N1) of the glmS ribozyme of Bacillus anthracis within hydrogen-bonding distance of the 2'-OH nucleophile. Apparent pK(a) values determined from the pH dependence of cleavage kinetics for wild-type and mutant glmS ribozymes do not support a role for G33, or any other active-site guanine, in general base catalysis. Furthermore, discrepancies between apparent pK(a) values obtained from functional assays and microscopic pK(a) values obtained from pH-fluorescence profiles with ribozymes containing a fluorescent guanosine analogue, 8-azaguanosine, at position 33 suggest that the pH-dependent step in catalysis does not involve G33 deprotonation. These results point to an alternative model in which G33(N1) in its neutral, protonated form donates a hydrogen bond to stabilize the transition state.  相似文献   

19.
20.
Pseudorotation reactions of biologically relevant oxyphosphoranes were studied by using density functional and continuum solvation methods. A series of 16 pseudorotation reactions involving acyclic and cyclic oxyphosphoranes in neutral and monoanionic (singly deprotonated) forms were studied, in addition to pseudorotation of PF5. The effect of solvent was treated by using three different solvation models for comparison. The barriers to pseudorotation ranged from 1.5 to 8.1 kcal mol(-1) and were influenced systematically by charge state, apicophilicity of ligands, intramolecular hydrogen bonding, cyclic structure and solvation. Barriers to pseudorotation for monoanionic phosphoranes occur with the anionic oxo ligand as the pivotal atom, and are generally lower than for neutral phosphoranes. The OCH3 groups were observed to be more apicophilic than OH groups, and hence pseudorotations that involve axial OCH3/equatorial OH exchange had higher reaction and activation free energy values. Solvent generally lowered barriers relative to the gas-phase reactions. These results, together with isotope 18O exchange experiments, support the assertion that dianionic phosphoranes are not sufficiently long-lived to undergo pseudorotation. Comparison of the density functional results with those from several semiempirical quantum models highlight a challenge for new-generation hybrid quantum mechanical/molecular mechanical potentials for non-enzymatic and enzymatic phosphoryl transfer reactions: the reliable modeling of pseudorotation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号