首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electron nuclear double resonance (ENDOR) technique is applied to study the influence of the incommensurate modulation on the proton hyperfine structure (hfs) tensors of the N(CH3)3 radical in betaine calcium chloride dihydrate (BCCD). The temperature dependence of the edge singularities due to the increasing of the incommensurate (IC) modulation amplitude could be observed in the1H ENDOR of the CH3 groups for the first time. The rotation pattern of the edge singularities observed in the1H spectra in the IC phase of BCCD can be explained by a libration around the C1-N axis with a tilt angle of about ±7°.  相似文献   

2.
Electron nuclear double resonance (ENDOR) spectra of free radicals produced by ultraviolet (UV) photolysis of polycrystalline and single crystal dimethylnitramine (or N-methyl-N-nitromethanamine) [DMN; (CH3)2NNO2 were studied atca. ?30°C. Results suggest that multiple radical species are formed during UV photolysis of DMN, perdeutero-DMN-d6, and15N-labeled DMN. Proton ENDOR spectra are consistent with assignment of a cation radical (CH3)2NNO 2 + as the major DMN radical species. Proton hyperfine coupling anisotropy, which is observed from the ENDOR spectra, is attributed to inequivalence of the two DMN methyl groups.  相似文献   

3.
The longitudinal relaxation timeT 1 and the second momentM 2 of1H nuclear magnetic resonance line in a wide temperature range have been measured for acetylcholine chloride. Two different types of the methyl groups reorientation occurred. The first type was the hindered rotation of the methyl group denoted as C(1)H3 about the threefold symmetry axis. The second type was the reorientation of the trimethyl group-N(CH3)3 around the pseudo C3 axis of C(6)-N(7) bond, which accompanied the standard C3 motion of the methyl group. The Dunn-McDowell model was applied to analyze the dynamics observed.  相似文献   

4.
The “Contracted Porphyrins” corrole and the recently synthesized isocorrole (as octaethyl derivatives) represent novel porphyrinoid macrocycles of biochemical interest. The radical cations of the free-bases of both corrole and its isomer are studied by EPR, ENDOR, and TRIPLE resonance in liquid solution to measure isotropic hyperfine couplings including signs. They yield detailed information of the electronic structure of the radical cations. The experimental findings are compared with results of all-valence-electrons self-consistent field molecular orbital calculations (RHF-INDO/SP). The comparison shows that the free-bases of corrole and isocorrole undergo protonation when oxidized to cation radicals in CH2Cl2 solution. Excellent agreement of the measured and calculated spin density distributions is achieved for the protonated dication radicals, which exhibit the C2 symmetry observed for the hyperfine structure. The analysis of the hyperfine data discriminates against NH tautomerism as the sole source for an effective C2 symmetry of the macrocycle.  相似文献   

5.
ABSTRACT

The rotational spectrum of 3-pentyn-1-ol, CH3?C≡C?CH2CH2OH, was measured using a molecular beam Fourier transform microwave spectrometer operating in the frequency range from 2 to 26.5 GHz. A two-dimensional potential energy surface was calculated at the MP2/6-311++G(d,p) level of theory for a conformational analysis, yielding five conformers. The most stable conformer exhibits C1 symmetry and was assigned in the spectrum by comparison with the results from quantum chemical calculations. The barrier to internal rotation of the propynyl methyl group CH3?C≡C? was found to be only 9.4552(94) cm?1. Molecular parameters and internal rotation parameters could be accurately determined using the program xiam and belgi-C1. The internal rotation barrier was compared with those of other molecules containing a propynyl methyl group.  相似文献   

6.
We report temperature-dependent Raman studies on single crystals of [N(CH3)4]2ZnCI4 from 300 to 10 K. The observed spectral features suggest that both the N(CH3)4 + and ZnCl2- 4 ions are distorted from their regular tetrahedral structure and occupy sites of Cs symmetry in the lattice at room temperature. From the variation of line width of some selected Raman bands and other spectral changes as a function of temperature, it is inferred that both the ZnCl2- 4 and—CH3 groups have high motional freedom at room temperature and the different phase transitions up to 160 K are triggered by the gradual freezing-in of orientational freedom of these groups, while the N—C4 tetrahedra do not play any significant role in these phase transitions. The monoclinic to orthorhombic superlattice phase transitions at 159 K is triggered by freezing-in of the orientational motions of both the ZnCl2- 4 and N(CH3)+ 4 groups in the lattice.  相似文献   

7.
Room temperature fluorine electron nuclear double resonance (ENDOR) has been successfully observed for several superstable fluorocarbon radicals ·C(C2F4R)(i-C3F7)2 in solution. Three radicals were employed in which CF3, F, and O-c-C6F10SO3C2F5 were introduced as R, and all the hyperfine couplings (hfcs) obtained by ENDOR were assigned with the help of ESR simulation and ab initio MO calculation. In case of ·C(i-C3F7)3 large 13C and considerable β-fluorine couplings suggest the nonplaner arrangement for the central and three carbons at the β-position, in spite of the fact that all the methyl fluorine show the same hfc. Therefore, a rapid puckering motion along the C3 axis together with the methyl rotation should average the hfc’s of the 18 fluorine nuclei to give the same value. When one of the CF3 groups is substituted with an F nucleus, the five CF3 groups give two hfc values, suggesting some dynamics still exists for the molecular frame. When a large group, O-c-C6F10SO3C2F5, is substituted for CF3, all the five CF3 groups become nonequivalent and the ENDOR signal becomes intensive and sharp even at 290 K, indicating that the molecular frame becomes rigid. The relation between the ENDOR spectra of these systems and the intramolecular dynamics is discussed.  相似文献   

8.
The rotational spectrum of isoamyl acetate, H3C–COO–(CH2)2–CH(CH3)2, has been recorded and assigned using a molecular beam Fourier transform microwave (MB-FTMW) spectrometer in the frequency range of 3–26.5?GHz. One conformer has been observed. By comparing the spectroscopic data with the quantum chemical data, it was found that the conformer observed does not have Cs symmetry. The rotational and centrifugal distortion constants were determined. The barrier to internal rotation of the acetate methyl group was found to be 93.98?cm?1. Due to the high number of the conformers, a systematic nomenclature will be presented.  相似文献   

9.
Laser magnetic resonance rotational spectra of the free radical CH2F have been obtained using far-infrared laser lines at 301.3, 393.6, 513.0, and 567.9 μm. The radical was prepared under fast-flow conditions by fluorine atom abstraction of a hydrogen from methyl fluoride and by fluorine atom addition to diazomethane. The spectra obtained are too crowded and overlapped to permit significant spectroscopic analysis, but they do support a planar C2v structure for CH2F and lead to a value of (B + C) = 1.953 ± 0.015 cm?1.  相似文献   

10.
Amine radical cations of the type R3N·+ and [R3NCH2]·+, R=CH3, C3H7, and nitric oxide, NO, have been used to probe the bonding to the surface and the dynamics of the radicals trapped in the confined space of cages or channels in the zeolite. Regular continuous-wave electron spin resonance (ESR) was employed to study the internal motion of the cation radicals formed by γ-irradiation of amines and related ammonium ions, introduced during the synthesis of the zeolites Al-offretite, SAPO-37, SAPO-42 and AlPO4-5. The ESR spectra of [(CH3)3NCH2]·+ radical cation in several studied systems changed reversibly with temperature, indicating dynamical effects. Free rotation about the >N?CH2 bond of the [(CH3)3NCH2]·+ species was found to occur in the temperature range of 110 to 300 K, while the rotation about the >N?CH3 bonds was hindered. The observations confirm the theoretical prediction on the basis of density functional theory calculations, which indicate that the corresponding barriers are of the order of 0.3 and 7 kJ/mol, respectively. The radical cations of the type R3N·+ with R=C2H5, C3H7 were found to undergo a different type of dynamics, involving a two-jump process of the methylene hydrogens next to the nitrogen. A cage or channel size effect on the stability and molecular dynamics was inferred in some cases. Pulsed ESR was employed to study the (NO)2 triplet-state dimers in Na-A type zeolite, with the purpose to resolve the interaction with surface groups, and to elucidate the role of the zeolite on stabilizing the triplet rather than the usual singlet state. Measurements performed at 5 K gave rise to Fourier transform spectra that were assigned to the dimer species interacting with one or more23Na nuclei, with approximative parameters A(23Na)=(4.6, 4.6, 8.2) MHz and Q(23Na)=(?0.3, ?0.3, 0.6) MHz for the hyperfine and nuclear quadrupole coupling tensors, respectively. The values are of similar magnitude as those determined for the NO?Na+ complex. The stability of the triplet-state structure was attributed to unusual geometric structure imposed by the zeolite matrix, with the N?O bonds along a line as in [O?N?Na+?N?O], which according to UHF ab initio calculations has a triplet ground  相似文献   

11.
Rotational transitions of CH3CCSiH3 have been observed in the millimeter-wave region using a computer-controlled source-frequency modulation spectrometer with a 1.8-m-long free space absorption cell. The observed spectrum clearly showed the effect of internal rotation with a small potential barrier. It has been analyzed by calculating the torsion-rotation energies on the basis of torsional wave functions obtained by diagonalizing the torsional part of the Hamiltonian. The least-squares analysis has yielded the rotational constant B = 2068.2817(4) MHz and a few centrifugal distortion constants. The barrier height to internal rotation has been determined to be 3.77(70) cm?1 from the contour map of the standard deviation. Also, the A rotational constant of the silyl group around the symmetry axis has been estimated by fixing the A constant of the methyl group to the value of CH3CCH.  相似文献   

12.
The Fourier transform microwave spectrum of isopropenyl acetate (CH3COOC(CH3)CH2) has been measured under molecular beam conditions. The experimental data as well as quantum chemical calculations have shown that this molecule exists as only one conformer of C1 symmetry, in which the vinyl group is tilted by an angle of approximately 70° against the plane containing the ester group. Due to internal rotation of the acetyl methyl group, we found large A-E splittings of all lines (from a few MHz up to 1 GHz or more). We also were able to resolve the splitting due to the internal rotation of the second isopropenyl methyl group. The A species lines split into doublets and the E species lines into triplets. These splittings vary from 10 kHz up to 1 MHz, much smaller than the splittings due to the acetyl methyl group. By analyzing the spectrum with the program Xiam, a torsional barriers of 135.3498(38) and 711.7(73) cm−1 for the acetyl methyl group and the isopropenyl methyl group were observed, respectively. All lines in the spectrum were also fitted with the program Erham to a standard deviation of only 2.3 kHz.  相似文献   

13.
The time-resolved magnetic field effect in the recombination fluorescence of spin-correlated radical ion pairs has been measured to study n-alkane radical cations in irradiated solutions at room temperature. The magnetic field effect was recorded as a ratio of fluorescence decay curves in the 0.1 T and zero magnetic fields for solutions of C8, C9, C10, C12, and C16 n-alkanes in n-hexane with addition of 3 × 10?5 M p-terphenyl-d 14. A distinct maximum at 10–30 ns followed by a slowly decaying plateau was observed for all the solutions. Simulation shows that the maximum corresponds to an unresolved ESR spectrum with the peak-to-peak line-width ranging from about 1.6mT to 0.5mT for C8 to C16 radical cations. The unresolved structure is believed to result from the hyperfine couplings with many protons of the radical cation, the increase in the number of interacting protons compared with low temperature matrices being caused by the methyl group rotation and conformational motion of the carbon chain. With increase in concentration of dissolved n-alkane, the maximum in the curves first moves to longer times and finally disappears; this was attributed to the narrowing of ESR spectrum contour due to degenerate electron exchange.  相似文献   

14.
Sulfide alkoxy radicals are important intermediates during the partial oxidation of alkyl sulfides in atmospheric chemistry and in combustion. The atmospheric reaction sequence to formation of the alkoxy radicals includes (1) initial reaction with OH to create a radical on a carbon site, (2) the carbon radical then associates with 3O2 to form a peroxy radical, and (3) an NO radical reacts with the peroxy radical to form an alkoxy radical (RO?) plus NO2. This study determines structural parameters, internal rotor potentials, bond dissociation energies, and thermochemical properties (ΔfH°, S°, and Cp(T)) of 3 corresponding alcohols HOCH2SCH2CH3, CH3SCH(OH)CH3, and CH3SCH2CH2OH of methyl ethyl sulfides studied in order to characterize the thermochemistry of the respective alkoxy radicals. The lowest energy molecular structures were calculated using the B3LYP density functional level of theory with the 6‐311G(2d,d,p) basis set. Standard enthalpies of formation (Δf298) for the radicals and their parent molecules were calculated using B3LYP/6‐31 + G(2d,p), CBS‐QB3, M062x/6‐311 + g(2d,p), and G3MP2B3 methods. Isodesmic reactions were used to determine ?fH° values. Internal rotation potential energy diagrams and rotation barriers were investigated using the B3LYP/6‐31 + G(d,p) level theory. The contributions for S°298 and Cp(T) were calculated using the rigid rotor harmonic oscillator approximation based on the structures and vibrational frequencies obtained by CBS‐QB3 calculations, with contributions from torsion frequencies replaced by internal rotor contributions. Group additivity and hydrogen bond increment values were developed for estimating properties of structurally similar and larger sulfur‐containing peroxide molecules and their radicals.  相似文献   

15.
The quadratic, cubic and semi-diagonal quartic force field of ethyl cyanide has been calculated at the B3LYP level of theory employing a basis set of triple-ζ quality. A semi-experimental equilibrium structure has been derived from experimental ground state rotational constants and rovibrational interaction parameters calculated from the ab initio force field. This structure is in excellent agreement with the ab initio structure calculated at the CCSD(T) level of theory using a basis set of quadruple-ζ quality and a core correlation correction. The empirical structures are also determined and their accuracy is discussed. The potential barrier V3 hindering internal rotation of the methyl group has been calculated from 23 rotational transitions of CH3CH2C15N which were found split into doublets, giving V3 = 3074(27) cal mol−1.  相似文献   

16.
The possibilities of applying three different pulsed ESR techniques have been considered: 1. Phase relaxation measurements by electron spin echo (ESE) affords the estimation of the correlation time of the motion in the region up to 10?5 s. The results of theoretical and experimental analysis of the effect of methyl group rotation in nitroxide radicals have been proposed. 2. The method of pulsed saturation involving detection of ESE signal allows the range of the measured times to be extended up to the values of about 10?2 s. The rotation of CH2 group in the CH2CO2 ? radical and that of the CH3 group in the CH3CHCO2 ? radical have been investigated. 3. The method of pulsed saturation combined with pulsed scanning of H0 allows the analysis of the rotationally induced redistribution of the pulsed saturation throughout the ESR spectra of the radicals. This version of pulsed ESR has been used to study the mobility of nitroxide spin labels.  相似文献   

17.
The microwave spectrum of N-acetylglycine was obtained using a NIST Fourier-transform microwave spectrometer equipped with a heated, pulsed-nozzle source. One conformer has been identified and its spectrum assigned. The conformer has CS point group symmetry and an intramolecular hydrogen bond between the carbonyl and amide groups of the 5-membered glycine unit. Internal rotation of the methyl rotor group leads to splitting of the rotational lines into A and E symmetry tunneling states. The 14N nuclear-quadrupole hyperfine structure verifies the rotational and internal-rotor state assignments. The V3 barrier of 57.5(1) cm−1 and the angles between the C3 axis of the methyl rotor and the principal inertial axes are in best agreement with the calculated values for the lowest energy conformer of the four conformers predicted at the MP2/6-311++G(d,p) level of theory.  相似文献   

18.
New infrared measurements of gaseous and matrix-isolated methanol and 7 deuterated species are presented and analyzed. A revised assignment for the species CH3OH(D) and CD3OH(D) is used to determine 15 significant parameters of a valence force field by a converged simultaneous least-squares adjustment to 44 observed fundamentals. The respective frequencies calculated for the rotamers of CH2DOH(D) and CHD2OH(D) turn out to be a valid prediction as they are used to assign 78 observed fundamentals of the species with partially deuterated methyl groups. The values of the 15 force constant parameters are refined by including all 122 observed fundamentals. The force field contains significant deviations from local C3v symmetry of the methyl group. Such an asymmetry, in the CH-stretching diagonal part, produces a difference of about 10 cm?1 in the zero point energy of symmetric and asymmetric rotamers of the species with partially deuterated methyl groups. Calculations based on equilibrium structures with and without methyl tilt yield better agreement with observed data in the nontilted case. A preliminary calculation of relative intensities reproduces the major effects of isotopic substitution and rotational isomerism. Experimental evidence for the staggered conformation is obtained from a comparison of observed data with calculated results based on staggered and eclipsed models.  相似文献   

19.
The rotational spectra of nine isotopomers of dimethyl diselenide, CH3SeSeCH3, have been measured with a molecular-beam Fourier transform microwave spectrometer. The spectra were complex due to the presence of many isotopomers in natural abundance and the splitting caused by the interactions with two methyl internal rotors. The spectra were assigned and fit to experimental precision to an effective rotational Hamiltonian for molecules with two periodic internal motions. The spectra of the symmetric isotopomers are consistent with a C2 equilibrium structure. The rotational constants were used to determine the rs structure of the C-Se-Se-C frame with the results r(SeSe)=2.306(3) Å, r(SeC)=1.954(6) Å, ?(CSeSe)=99.8(2)°, ?(CSeSeC)=85.2(1)°. A barrier to internal rotation of the methyl groups of 395 ± 2 cm−1 was derived from the internal rotation splittings.  相似文献   

20.
Two laminar, premixed, fuel-rich flames fueled by anisole-oxygen-argon mixtures with the same cold gas velocity and pressure were investigated by molecular-beam mass spectrometry at two synchrotron sources where tunable vacuum-ultraviolet radiation enables isomer-resolved photoionization. Decomposition of the very weak O–CH3 bond in anisole (C6H5OCH3) by unimolecular decomposition yields the resonantly-stabilized phenoxy radical (C6H5O). This key intermediate species opens reaction routes to five-membered ring species, such as cyclopentadiene (C5H6) and cyclopentadienyl radicals (C5H5). Anisole is often discussed as model compound for lignin to study the phenolic-carbon structure in this natural polymer. Measured temperature profiles and mole fractions of many combustion intermediates give detailed information on the flame structure. A very comprehensive reaction mechanism from the literature which includes a sub-scheme for anisole combustion is used for species modeling. Species with the highest measured mole fractions (on the order of 10?3–10?2) are CH3, CH4, C2H2, C2H4, C2H6, CH2O, C5H5 (cyclopentadienyl radical), C5H6 (cyclopentadiene), C6H6 (benzene), C6H5OH (phenol), and C6H5CHO (benzaldehyde). Some are formed in the first destruction steps of anisole, e.g., phenol and benzaldehyde, and their formation will be discussed and with regard to the modeling results. There are three major routes for the fuel destruction: (1) formation of benzaldehyde (C6H5CHO), (2) formation of phenol (C6H5OH), and (3) unimolecular decomposition of anisole to phenoxy (C6H5O) and CH3 radicals. In the experiment, the phenoxy radical could be measured directly. The phenoxy radical decomposes via a bicyclic structure into the soot precursor C5H5 and CO. Formation of larger oxygenated species was observed in both flames. One of them is guaiacol (2-methoxyphenol), which decomposes into fulvenone. The presented speciation data, which contain more than 60 species mole fraction profiles of each flame, give insights into the combustion kinetics of anisole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号