首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The physical aspects of the influence of the elastic energy anisotropy of crystals on the anisotropy of the mean free paths of phonons in single-crystal films of germanium, silicon, and diamond in the diffuse scattering of phonons at the boundaries of the samples have been considered. It has been shown that, for sufficiently wide films of germanium, silicon, and diamond with the {100} and {111} orientations and the lengths of less than or equal to their width, the phonon mean free paths are isotropic (independent of the direction of the temperature gradient in the plane of the film). The anisotropy of the phonon mean free paths depends primarily on the orientation of the film plane and is determined by the focusing and defocusing of phonon modes. For single-crystal films of germanium, silicon, and diamond with the {100} and {111} orientations and lengths much larger than their width, the phonon mean free paths are anisotropic.  相似文献   

2.
Ballistic phonon propagation in single-crystalline [001]-oriented gallium arsenide has been studied using low-temperature scanning electron microscopy for imaging. Deviations in the phonon focusing pattern due to dispersion effects were found by comparing the phonon images to theoretical calculations of the long-wavelength limit. The phonon propagation behavior in, samples cut from differently prepared wafers has been investigated. For highly impure crystals we found a pronounced increase of the diffusive signal component at the expense of the ballistic one. Samples with varying dislocation densities also showed a sensitive dependence, of the ballistic phonon propagation on these crystal defects. For focusing calculations considering elastic scattering processes the diffusivity of the phonons could be determined as a function of the mean scattering length. We have found phonon mean free paths of 0.35 mm to 0.80 mm for the various GaAs crystals.  相似文献   

3.
The influence of phonon focusing on the anisotropy and temperature dependences of the thermal conductivity of silicon nanowires (NWs) has been studied using the three-mode Callaway theory. The calculated temperature dependences of the thermal conductivity of silicon NWs with diameters above 50 nm agree well with experimental data in the 20–300 K range. The temperatures of transitions from the boundary-scattering to volume-relaxation mechanisms are determined. Variation of the thermal conductivity anisotropy depending on temperature is analyzed. The free paths of phonons with various polarizations in the boundary scattering regime in silicon NWs significantly differ and depend to a considerable degree on the phonon focusing. The free paths reach maxima in the directions of phonon focusing and exceed values for other oscillatory modes. However, in the isotropic medium model, the phonon free paths for various polarizations coincide and are fully determined by the geometric parameters of NWs.  相似文献   

4.
The influence of the anisotropy of elastic energy on the phonon propagation and phonon transport in single crystal nanofilms with different types of anisotropy of elastic energy in a Knudsen flow of a phonon gas is studied. The angular distribution of phonon mean free paths in the planes of the films and in their cross section is analyzed. The physical reasons leading to the dependence of the thermal conductivity on the orientation of the film planes and the directions of the heat flux relative to the crystal axes are studied. An analysis of the effect of focusing on the phonon propagation made it possible to explain the qualitative difference between the anisotropy of phonon mean free paths in films of cubic nanocrystals of various types having different orientations of the planes.  相似文献   

5.
A method has been proposed for approximating a phonon spectrum of cubic crystals, which has been obtained from data on inelastic neutron scattering for symmetric directions, over the entire Brillouin zone in the form appropriate for studying relaxation characteristics of phonon systems. The effect of dispersion and damping of thermal phonon states on the longitudinal ultrasonic absorption in anharmonic processes of scattering with the participation of three longitudinal phonons has been investigated for germanium crystals. It has been shown that the inclusion of the dispersion leads to a decrease in the anisotropy of ultrasonic absorption in the LLL relaxation mechanism and makes it possible to fit the results obtained from calculations of the ultrasonic absorption coefficients to the experimental data in the low-temperature range. The temperature dependence and anisotropy of the relaxation rate of longitudinal thermal phonons in germanium crystals have been determined from experimental data on ultrasonic absorption. The performed analysis has refined values of the relaxation parameters obtained from the interpretation of the data on thermal conductivity of germanium crystals with different isotopic compositions in the isotropic-medium model.  相似文献   

6.
We study the effect of anisotropy in elastic properties on the electron–phonon drag and thermoelectric phenomena in gapless semiconductors with degenerate charge-carrier statistics. It is shown that phonon focusing leads to a number of new effects in the drag thermopower at low temperatures, when diffusive phonon scattering from the boundaries is the predominant relaxation mechanism. We analyze the effect of phonon focusing on the dependences of the thermoelectromotive force (thermopower) in HgSe:Fe crystals on geometric parameters and the heat-flow directions relative to the crystal axes in the Knudsen regime of the phonon gas flow. The crystallographic directions that ensure the maximum and minimum values of the thermopower are determined and the role of quasi-longitudinal and quasi-transverse phonons in the drag thermopower in HgSe:Fe crystals at low temperatures is analyzed. It is shown that the main contribution to the drag thermopower comes from slow quasi-transverse phonons in the directions of focusing in long samples.  相似文献   

7.
戈华  胡文弢  肖景林 《发光学报》2007,28(4):479-484
采用线性组合算符和幺正变换,利用变分法计算了多原子半无限极性晶体中由电子和光学声子强耦合相互作用所产生的磁极化子的第一激发能量及平均声子数,并通过适当的数值计算图示了它们与磁场的关系。结果表明:在不同的磁场条件下,电子无限接近晶体表面和电子处于晶体深处时,磁极化子的第一激发能量和平均声子数都有所不同。  相似文献   

8.
The phonon relaxation and quasi-transverse ultrasound absorption in the course of Herring and Landau-Rumer anharmonic scattering processes in cubic crystals with positive (Ge, Si, diamond, InSb, LiF, MgO) and negative (KCl, NaCl, CaF2) anisotropies of the second-order elastic moduli have been investigated. A new mechanism of transverse phonon relaxation, according to which the fusion of a transverse (slow or fast) phonon with a slow phonon generates a fast transverse phonon, has been considered in the long-wave-length approximation. This mechanism is similar to the Herring relaxation mechanism for longitudinal phonons. It has been demonstrated that, for crystals of the first group with a considerable anisotropy of the elastic energy (Ge, Si, InSb, LiF, MgO), “anomalous” relaxation processes in which the fusion of a slow transverse phonon with a fast phonon generates a slow transverse phonon are possible in contrast to the Herring relaxation mechanism for longitudinal phonons. These relaxation processes appear to be impossible for all crystals of the second group (KCl, NaCl, CaF2), as well as for crystals of the first group with a small anisotropy of the elastic energy, such as diamond. The angular dependences of the ultrasound absorption coefficient for the Herring and Landau-Rumer mechanisms have been analyzed using the anisotropic-continuum model. It has been shown that, for the crystals of the first group under consideration, the contribution of the Herring mechanism to the long-wavelength ultrasound absorption is small compared to the contribution of the Landau-Rumer mechanism. However, for the KCl and NaCl crystals of the second group in directions of the [001] type, the contribution of the Herring mechanism can significantly exceed the contribution of the Landau-Rumer mechanism.  相似文献   

9.
The effect of phonon focusing on the phonon transport in single-crystal nanofilms and nanowires is studied in the boundary scattering regime. The dependences of the thermal conductivity and the free path of phonons on the geometric parameters of nanostructures with various elastic energy anisotropies are analyzed for diffuse phonon scattering by boundaries. It is shown that the anisotropies of thermal conductivity for nanostructures made of cubic crystals with positive (LiF, GaAs, Ge, Si, diamond, YAG) and negative (CaF2, NaCl, YIG) anisotropies of the second-order elastic moduli are qualitatively different for both nanofilms and nanowires. The single-crystal film plane orientations and the heat flow directions that ensure the maximum or minimum thermal conductivity in a film plane are determined for the crystals of both types. The thermal conductivity of nanowires with a square cross section mainly depends on a heat flow direction, and the thermal conductivity of sufficiently wide nanofilms is substantially determined by a film plane orientation.  相似文献   

10.
Propagation of nonequilibrium acoustic phonons in coarse-grained ZnTe obtained through vacuum sublimation was studied using the heat pulse method under both optical and metallic-heater phonon generation. The phonon mean free paths in the samples studied were shown to be 14 µm and to be dominated by scattering from twin boundaries.  相似文献   

11.
The effect of dispersion on the focusing of thermal phonons and on the thermal conductivity of silicon single crystals in the boundary scattering regime has been investigated. Analysis of the spectra of acoustic modes obtained for silicon single crystals from inelastic neutron scattering data has demonstrated that, upon transition from long-wavelength phonons to short-wavelength phonons, the directions of their focusing change. With an increase in temperature, this leads to a change in the anisotropy of thermal conductivity of phonons with different polarizations and, consequently, to a change in the anisotropy of the total thermal conductivity. Analysis of the temperature dependence of the thermal conductivity has revealed that the presence of extended flattened sections in the spectrum of short-wavelength transverse phonons indicates anomalously low values of the group velocity and, accordingly, a significant decrease in the contribution from these phonons to the thermal conductivity with increasing temperature. The contribution from longitudinal phonons to the thermal conductivity also significantly increases even at temperatures higher than 110 K and becomes dominant.  相似文献   

12.
弱耦合多原子半无限晶体中的表面极化子的有效势   总被引:3,自引:0,他引:3  
本文研究弱耦合多原子半无限晶体中表面极化子的性质。采用线性组合算符和幺正变换导出表面极化子的的有效势。  相似文献   

13.
In the harmonic approximation the Hamiltonian of the vibrational states gives the picture of non-interacting phonons in a crystal. At finite temperatures all crystals contain anharmonic lattice forces. The effect of anharmonicity introduces the interactions of independent phonons in crystals. The number of independent vibrational modes originating from the high symmetry points and lines in the Brillouin zone is determined by lattice mode representation (LMR). The three phonon processes such as overtones and combinations are subjected to group theoretical selection rules. The overtones result from the Symmetrized Cubes of active species (irreducible representations (irrps)) and combinations from the complete reduction of the triple Kronecker product of different irrps according to which the vibrational states of crystals are classified. We have determined the symmetry allowed overtones, simple and general combinations of three phonon processes in GaN. The back-scattering Raman spectroscopy from GaN in the region 900–2200 cm−1 yields several optically active transitions; these are analyzed in terms of the derived three phonon Raman selection rules.  相似文献   

14.
华钰超  曹炳阳 《物理学报》2015,64(14):146501-146501
纳米技术的快速发展使得对微纳尺度导热机理的深入研究变得至关重要. 理论和实验都表明, 在纳米尺度下声子热导率将表现出尺寸效应. 基于声子玻尔兹曼方程和修正声子平均自由程的方法得到了多约束纳米结构的声子热导率模型, 可以描述多个几何约束共同作用下热导率的尺寸效应. 不同几何约束对声子输运的限制作用可以分开计算, 总体影响则通过马西森定则进行耦合. 对于热流方向的约束, 采用扩散近似的方法求解声子玻尔兹曼方程; 对于侧面边界约束, 采用修正平均自由程的方法计算边界散射对热导率的影响. 得到的模型能够预测纳米薄膜(法向和面向)及有限长度方形纳米线的热导率随相应特征尺寸的变化. 与蒙特卡罗模拟及硅纳米结构热导率实验值的对比验证了模型的正确性.  相似文献   

15.
A boundary element method (BEM) is presented to compute the transmission spectra of two-dimensional (2-D) phononic crystals of a square lattice which are finite along the x-direction and infinite along the y-direction. The cross sections of the scatterers may be circular or square. For a periodic cell, the boundary integral equations of the matrix and the scatterers are formulated. Substituting the periodic boundary conditions and the interface continuity conditions, a linear equation set is formed, from which the elastic wave transmission can be obtained. From the transmission spectra, the band gaps can be identified, which are compared with the band structures of the corresponding infinite systems. It is shown that generally the transmission spectra completely correspond to the band structures. In addition, the accuracy and the efficiency of the boundary element method are analyzed and discussed.  相似文献   

16.
The thermal conductivity κ of heavily deformed LiF crystals has been measured at temperatures T ? 0.5 K following exposure of the samples to γ irradiation. The results are in agreement with recent measurements of ballistic phonon propagation in similar samples at an equivalent temperature of ≈ 4 K. A fraction of the phonons have a mean free path of order 1 cm in the heavily deformed crystal, and γ-irradiation increases the fraction having a long mean free path. The measurements support a dynamic (as opposed to static) model of phonon-dislocation interaction.  相似文献   

17.
The properties of vibrational localized (breathers) and traveling (anharmonic phonons) waves are discussed in an infinite, one-dimensional, monoatomic crystal for the Fermi-Pasta-Ulam and Frenkel-Kontorova models. The shooting and finite difference schemes have been implemented to reckon the displacement fields of breathers and anharmonic phonons, respectively. These tools provide localized and traveling waves proving to be indefinitely stable in simulations carried out by solving the equations of motion. The emphasis is laid on the role of the cubic and quartic terms of the anharmonic potential which turn out to oppose and to shore up the restoring force, respectively. The case of vibrational modes arising in an anharmonic crystal subject to a soft phonon induced instability is also addressed. Received 7 November 2001 and Received in final form 5 February 2002 Published online 6 June 2002  相似文献   

18.
Relaxation of slow quasi-transverse phonons in anharmonic processes of scattering in cubic crystals with positive (Ge, Si, diamond) and negative (KCl, NaCl) anisotropies of the second-order elastic moduli has been considered. The dependences of the relaxation rates on the direction of the wave vector of phonons in scattering processes with the participation of three quasi-transverse phonons (the TTT relaxation mechanisms) are analyzed within the anisotropic continuum model. It is shown that the TTT relaxation mechanisms in crystals are associated with their cubic anisotropy, which is responsible for the interaction between noncollinear phonons. The dominant contribution to the phonon relaxation comes from large-angle scattering. For crystals with significant anisotropy of the elastic energy (Ge, Si, KCl, NaCl), the total contribution of the TTT relaxation mechanisms to the total relaxation rate exceeds the contribution of the Landau-Rumer mechanism either by several factors or by one to two orders of magnitude depending on the direction. The dominant role of the TTT relaxation mechanisms as compared to the Landau-Rumer mechanism is governed, to a considerable extent, by the second-order elastic moduli. The total relaxation rates of slow quasi-transverse phonons are determined. It is demonstrated that, when the anharmonic processes of scattering play the dominant role, the inclusion of one of the relaxation mechanisms (the Landau-Rumer mechanism or the mechanisms of relaxation of the slow quasi-transverse mode by two slow or two fast modes) is insufficient for describing the anisotropy of the total relaxation rates in cubic crystals.  相似文献   

19.
The deviation from Matthiessen's rule has been investigated. The calculations were based upon three group model, in which the Fermi surface is split up into three regions. The mean free paths over the three major regions are denoted byL 1,L 2 andL 3. Besides the Fermi surface anisotropy, the anisotropy of electron scattering with phonons and impurities have also been employed in the calculations. Simple formulae for the residual resistivity, the resistivity associated with phonon scattering and the deviation from Matthiessen's rule Δ(C, T), in terms of the anisotropic parameters, were derived. The formulae were used to throw light on the deviation from Matthiessen's rule.  相似文献   

20.
The phonon images of crystals are described in the frame of the Boltzmann kinetic equation. Monochromatic heat pulses of the dispersive and dispersionless acoustic phonons are considered. Exact expressions for the energy and quasimomentum carried by a pulsed beam of monochromatic dispersionless acoustic phonons falling onto a detector of the finite area are derived. These formulae provide us with a convenient starting point for numerical calculations of phonon images. For the example of long wave-length acoustic phonons and a point as well as extended sources, an algorithm for numerical calculations of phonon images of anisotropic crystalline media is presented. However, it is quite general and can be easily adapted for dispersive phonons and to quasiparticles with an arbitrary dispersion low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号