首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heteroaggregation (or heterocoagulation) rate constants have been measured in mixtures of well-characterized colloidal particles of opposite charge with multiangle static and dynamic light scattering. This technique permits routine measurements of absolute heteroaggregation rate constants, also in the presence of homoaggregation. Particularly with multiangle dynamic light scattering, one is able to estimate absolute heteroaggregation rate constants accurately in the fast aggregation regime for the first time. Heteroaggregation rate constants have also been measured over a wide range of parameters, for example, ionic strength and different surface charge densities. Amidine latex particles, sulfate latex particles, and silica particles have been used for these experiments, and they were well characterized with respect to their charging and homoaggregation behavior. It was shown that heteroaggregation rate constants of oppositely charged particles increase slowly with decreasing ionic strength, and provided the surface charge is sufficiently large, the rate constant is largely independent of the surface charge. These trends can be well described with DLVO theory without adjustable parameters.  相似文献   

2.
Phase diagrams of binary mixtures of oppositely charged colloids are calculated theoretically. The proposed mean-field-like formalism interpolates between the limits of a hard-sphere system at high temperatures and the colloidal crystals which minimize Madelung-like energy sums at low temperatures. Comparison with computer simulations of an equimolar mixture of oppositely charged, equally sized spheres indicate semiquantitative accuracy of the proposed formalism. We calculate global phase diagrams of binary mixtures of equally sized spheres with opposite charges and equal charge magnitude in terms of temperature, pressure, and composition. The influence of the screening of the Coulomb interaction upon the topology of the phase diagram is discussed. Insight into the topology of the global phase diagram as a function of the system parameters leads to predictions on the preparation conditions for specific binary colloidal crystals.  相似文献   

3.
Heteroaggregates composed of cationic porphyrin, meso-tetra(p-trimethylamino)-porphyrin iodide, its zinc complex and anionic phthalocyanine sodium hydroxygallium 4,4',4",4"'-tetrasulfonated phthalocyanine have been investigated by absorption and fluorescence spectroscopy. It has been found that both free base cationic porphyrin and its zinc complex can form very stable heterodimers with anionic phthalocyanine in water, methanol and dhnethylfonnamide. The stability of the aggregate depends on the polarity as well as the ligation ability of the solvent. No evidence of higher aggregates was detected. Besides axial coordination, steric hindrance which influence the relative orientation of the macrocycles are considered.  相似文献   

4.
We study the phase behavior and the interfacial tension of the screened Coulomb (Yukawa) restricted primitive model (YRPM) of oppositely charged hard spheres with diameter sigma using Monte Carlo simulations. We determine the gas-liquid and gas-solid phase transitions using free energy calculations and grand-canonical Monte Carlo simulations for varying inverse Debye screening length kappa. We find that the gas-liquid phase separation is stable for kappasigma相似文献   

5.
The adsorption of a long weakly charged flexible polyelectrolyte in a salt solution onto an oppositely charged spherical surface is investigated. An analytical solution for Green's function is derived, which is valid for any sphere radius and consistently recovers the result of a planar surface in the limit of large sphere radii, by substituting the Debye-Hückel potential via the Hulthén potential. Expressions for critical quantities like the critical radius and the critical surface charge density are provided. In particular, we find a universal critical line for the sphere radius as a function of the screening length separating adsorbed from desorbed states. Moreover, results for the monomer density distribution, adsorbed layer thickness, and the radius of gyration are presented. A comparison of our theoretical results with experiments and computer simulations yields remarkably good agreement.  相似文献   

6.
Polyelectrolyte-colloid coacervation could be viewed as a sub-category of complex coacervation, but is unique in (1) retaining the structure and properties of the colloid, and (2) reducing the heterogeneity and configurational complexity of polyelectrolyte-polyelectrolyte (PE-PE) systems. Interest in protein-polyelectrolyte coacervates arises from preservation of biofunctionality; in addition, the geometric and charge isotropy of micelles allows for better comparison with theory, taking into account the central role of colloid charge density. In the context of these two systems, we describe critical conditions for complex formation and for coacervation with regard to colloid and polyelectrolyte charge densities, ionic strength, PE molecular weight (MW), and stoichiometry; and effects of temperature and shear, which are unique to the PE-micelle systems. The coacervation process is discussed in terms of theoretical treatments and models, as supported by experimental findings. We point out how soluble aggregates, subject to various equilibria and disproportionation effects, can self-assemble leading to heterogeneity in macroscopically homogeneous coacervates, on multiple length scales.  相似文献   

7.
We report experiments on the stability of aqueous mixtures of charged colloidal magnetite and charged silica and silica covered with alumina particles of similar size. First, positively charged magnetite dispersions were mixed with negatively charged silica dispersions at pH 4, at different volume ratios and low colloid volume fractions, producing mixtures which were stable over a period of weeks despite the expected electrostatic attraction between the oppositely charged particles. When magnetite particles were mixed with positively charged silica covered with alumina at pH 4 under exactly the same conditions, some of the systems separated to form a magnetite sediment. When the volume fraction of the initial dispersions was increased, the behavior of the mixtures was the opposite: positive magnetite/negative silica mixtures were unstable at intermediate volume ratios. The unexpected behavior of the mixtures was investigated by means of electrophoretic mobility, initial susceptibility, and dynamic light scattering measurements as well as sedimentation experiments.  相似文献   

8.
The interactions between the negatively charged protein, β-lactoglobulin (BLG) and the cationic surfactant dodecyltrimethylammonium chloride (DOTAC) in water have been investigated by determining the phase equilibria of the ternary system within the concentration range of 20 wt.% of both protein and surfactant. Three main regions are formed—an isotropic solution phase, a white precipitation region and a blueish, isotropic, highly viscous gel phase. The protein solution can solubilize 1 mole surfactant, [DOTAC] per mole protein, [BLG] prior to precipitation. The protein-surfactant precipitate complex is neutral and consists of 8 [DOTAC]/[BLG]. The net charge of the protein in water at aqueous pH is −7 and this agrees with the determined composition. The pH is, however, decreased on addition of DOTAC, but this does not seem to affect the composition of the precipitate significantly. The amount of precipitate reaches a maximum at about 8 [DOTAC]/[BLG] and thereafter a plateau region occurs where no more precipitate seems to be formed. On further increasing the surfactant concentration the precipitate redissolves either into a solution phase directly or into a solution phase via a gel phase depending on the protein concentration. On decreasing salt concentration the ternary system shows similar phase behaviour, but the stability of the regions are different. It is also observed that oppositely charged protein-surfactant systems show similar phase behaviour irrespective of nature of the net charge on the protein.  相似文献   

9.
Nanofilms were prepared by alternating deposition of Mg–Al (2:1) NO 3 layered double hydroxide (LDH), hectorite and silica particles present study. The charge density of the oppositely charged materials strongly affect film properties like thickness and ordering. The specific charge of the colloidal particles was measured with the particle charge detector. The sequential build up of the thin films was followed by spectrophotometry and X-ray diffraction (XRD). The surface morphology of the formed multilayers was characterized and film thickness determination was performed by atomic force microscopy. The influence of the charge density of hectorite and silica particles on the LDH/hectorite, LDH/silica film thickness was studied. The results reveal that the LDH concentration has a significant effect on the film thickness while the hectorite and silica concentration were not important. Films prepared from the different types of negatively charged inorganic particles in the same concentration range (0.25–1.0%) have similar thickness because of the much higher surface charge relative to the LDH lamellae.  相似文献   

10.
We study gel formation in a mixture of equally-sized oppositely charged colloids both experimentally and by means of computer simulations. Both the experiments and the simulations show that the mechanism by which a gel is formed from a dilute, homogeneous suspension is an interrupted gas-liquid phase separation. Furthermore, we use Brownian dynamics simulations to study the relation between gel formation and the equilibrium phase diagram. We find that, regardless of the interaction range, an interrupted liquid-gas phase separation is observed as the system is quenched into a state point where the gas-liquid separation is metastable. The structure of the gel formed in our experiments compares well with that of a simulated gel, indicating that gravity has only a minor influence on the local structure of this type of gel. This is supported by the experimental evidence that gels squeezed or stretched by gravity have similar structures, as well as by the fact that gels do not collapse as readily as in the case of colloid-polymer mixtures. Finally, we check whether or not crystallites are formed in the gel branches; we find crystalline domains for the longer ranged interactions and for moderate quenches to the metastable gas-liquid spinodal regime.  相似文献   

11.
Aggregation kinetics and gel formation in aqueous suspensions that undergo heteroaggregation are studied by means of Brownian dynamics simulations. The simulated system, described in a previous paper [M. A. Piechowiak, A. Videcoq, F. Rossignol, C. Pagnoux, C. Carrion, M. Cerbelaud, R. Ferrando, Langmuir, 2010, 26(15), 12540-12547.], is constituted of two kinds of synthesized, almost equally sized colloids: silica particles that are negatively charged and alumina-coated silica particles that are positively charged. The interactions between colloids are modeled by the DLVO potential. Several compositions are analyzed, from silica-rich to alumina-rich cases. The particle volume fraction φ is varied in the range 6-12%. The study of the aggregation kinetics allows us to clarify the effect of those variations on the clustering process. Gelation is analyzed by detection of spanning clusters in each x-, y-, z-direction of the cubic simulation box. Percolating networks start to be observed from φ = 7%, a low value of the volume fraction close to the solid volume fraction experimentally measured in sediments of those suspensions.  相似文献   

12.
Semipermanent surfactant coatings are effective for the prevention of wall adsorption of proteins in CE. However, they often suffer from their unsatisfactory coating stability as they essentially degrade from the capillary walls after the surfactants are removed from the buffer. In this paper, we proposed a facile and universal method to improve the stability of semipermanent surfactant coatings based on addition of an oppositely charged surfactant into the coating. Didodecyldimethylammonium bromide (DDAB) and a gemini surfactant, 18-6-18, were used as the model semipermanent coatings, and sodium dodecyl sulfate (SDS) was chosen as their oppositely charged surfactant. SDS can strongly alter the packing parameter P of the cationic surfactants, and consequently mediates the coating stability. With the increase of SDS concentration in coating, the coating stability first dramatically increases due to the enlarged P, and then decreases due to the weakness of electrostatic interaction between the capillary wall and surfactant coating. At the proper SDS concentration, very stable coatings can be obtained that, even after rinsing under 138 kPa for 60 min, the reversed electroosmotic flow (EOF) only decreases by 3.6%. These SDS-enhanced coatings show excellent stability and reproducibility in protein separation (RSD of migration time <1.1% for run-to-run assay, n=9). Also, the high separation efficiency (>500,000 plates/m) and fine recovery of tested proteins indicate that these coatings are powerful in wall adsorption suppression. Finally, we found that the separation efficiency of protein was a more exact indicator for the coating stability than the traditional EOF magnitude.  相似文献   

13.
In this study, the phase behavior, structure and properties of systems composed of the cationic, cellulose-based polycation JR 400 and the anionic surfactants sodium dodecylbenzenesulfonate (SDBS) or sodium dodecylethoxysulfate (SDES), mainly in the semidilute regime, were examined. This system shows the interesting feature of a very large viscosity increase by nearly 4 orders of magnitude as compared to the pure polymer solution already at very low concentrations of 1 wt%. By using rheology, dynamic light scattering (DLS), and small-angle neutron scattering (SANS), we are able to deduce systematic correlations between the molecular composition of the systems (characterized by the charge ratio Z=[+(polymer)]/[?(surfactant)]), their structural organization and the resulting macroscopic flow behavior. Mixtures in the semidilute regime with an excess of polycation charge form highly viscous network structures containing rodlike aggregates composed of surfactant and polyelectrolyte that are interconnected by the long JR 400 chains. Viscosity and storage modulus follow scaling laws as a function of surfactant concentration (η~c(s)(4); G(0)~c(s)(1.5)) and the very pronounced viscosity increase mainly arises from the strongly enhanced structural relaxation time of the systems. In contrast, mixtures with excess surfactant charges form solutions with viscosities even below those of the pure polymer solution. The combination of SANS, DLS, and rheology shows that the structural, dynamical, and rheological properties of these oppositely charged polyelectrolyte/surfactant systems can be controlled in a systematic fashion by appropriately choosing the systems composition.  相似文献   

14.
Mixtures of oppositely charged nanoparticles of various sizes and charge ratios precipitate only at the point of electroneutrality. This phenomenon-specific to the nanoscale and reminiscent of threshold precipitation of ions-is a consequence of the formation of core-and-shell nanoparticle aggregates, in which the shells are composed of like-charged particles and are stabilized by efficient electrostatic screening.  相似文献   

15.
A family of cationic polyelectrolytes possessing defined chain lengths, narrow chain length distributions, uniform charge density, but substituents of different hydrophilicity at the quaternary ammonium group served as model compounds for adsorption studies. These studies quantitatively revealed that polymer characteristics and electrostatic parameters affect the adsorption behavior on oppositely charged porous column materials. The presence of electrostatic exclusion, in addition to size exclusion, was proved comparing molecular, electrostatic and geometrical parameters. The dominance of electrostatic effects could be concluded evaluating the relation between molecular and electrostatic dimensions. The results provide a contribution how to estimate the threshold for electrostatic exclusion from pores as a function of dimensions and experimental conditions.  相似文献   

16.
Microcalorimetric techniques, combined with turbidity measurements, were used to study the thermodynamics of self-assembling of hydrophobically modified cationic polysaccharides and their mixtures with oppositely charged surfactants in aqueous solution. The studied polyelectrolytes were a series of polymers based on dextran having pendant N-(2-hydroxypropyl)-N,N-dimethyl-N-alkylammonium chloride groups randomly distributed along the polymer backbone. The parameters for their micellization process are evaluated from the results of the observed dilution enthalpy curves and compared with those of the related cationic surfactants (DTAC and CTAC). The microcalorimetric results for the mixed systems (polyelectrolytes with oppositely charged surfactants) are used along with turbidity measurements to characterize systematically the thermodynamics of their interaction. The phase behavior is described and the interaction enthalpies are derived from the differences between the observed enthalpy curves with and without polyelectrolyte. Therefore, we discuss in detail the effect of changing the alkyl chain length of polyelectrolyte pendant groups, the molecular weight of the dextran backbone, and the temperature of the measurements on the interactions between polyelectrolyte and surfactant.  相似文献   

17.
We study phase separation in symmetric solutions of weakly charged flexible chains of opposite sign. Precipitation is caused by effective attractions due to charge fluctuations and by short-range attractions between monomers. The contribution from charge fluctuations is computed within the random phase approximation (RPA), which takes into account the connectivity of charges in the polyions. The impenetrability of the ions is accounted for by using a modified Coulomb potential in the RPA. In good solvent conditions the precipitate monotonically swells and eventually dissolves upon addition of salt. However, near the theta-solvent condition, but still in the good solvent, the precipitate can be stable at any salt concentration. Moreover, the density of the precipitate after initial decrease can increase with addition of salt. This effect is a result of redistribution of salt between the precipitate and the supernatant, which is due to an interplay of electrostatic and hardcore interactions. For not too weakly charged polyions the precipitate properties become strongly dependent on temperature even in good solvent conditions.  相似文献   

18.
Oppositely charged polyelectrolytes interact in solution, forming polyelectrolyte complexes, which often appear as gel-like precipitates. This kind of complex formation was studied by means of calorimetric and rheological measurements. The enthalpy effects, though being fairly small, give some information about the binding strength of counterions to the macroion. We studied the system poly(p-styrene sulfonate)/poly(trimethylammonium-2-ethyl methacrylate) (PSS-PTMA), varying systematically the low molar mass counterions of PSS. In every case, the maximum of enthalpy was found around a 1:1 (mol:mol monomer units) composition of the complexes, with the shape of enthalpy versus composition-curve indicating a stoichiometric interaction. The maximum enthalpy decreased with increasing atomic mass of the counterion when the alkaline metal salts of PSS were used and no change was made on the side of the cationic polyelectrolyte. The salts of the alkaline earth metals gave a distinctly higher enthalpy. On the contrary, viscosity measurements showed a very broad minimum as a function of composition, indicating that the formation of non-stoichiometric complexes is also occurring. The conclusion of these observations is that the complex formation is stoichiometric with respect to the monomeric units, but not necessarily stoichiometric with respect to the entire macromolecules.  相似文献   

19.
In the field of biological applications, polyelectrolyte complexes are proposed to encapsulate bioactive compounds, to deliver drugs, and also to transfect genes into cells under the name of polyplexes. Complex formation is obtained by addition of a polycation solution into a polyanion solution or vice‐versa. This work proposes a theoretical approach to describe complex formation in the case of non‐stoichiometric mixtures of oppositely charged macroions having different degrees of ionization and different degrees of polymerization under different salt conditions. In a second part, comparison was made with experimental data collected when a weak polybase, namely poly(l ‐lysine) under its bromide form was added stepwise to solutions of various polyanions under their sodium salt form, namely poly(l ‐lysine citramide imide), poly(l ‐lysine citramide), and poly(β‐malic acid), the latter lacking hydroxyl groups attached to the main chain. The stability of stroichiometric complexes made of poly(l ‐lysine) and poly(l ‐lysine citramide) having different molecular masses is discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1717–1730  相似文献   

20.
The enantiomeric separation of some nonsteroidal anti-inflammatory drugs (NSAIDs) was investigated in capillary electrophoresis (CE) using dual systems with mixtures of charged cyclodextrin (CD) derivatives. A significant enhancement of selectivity and resolution could be achieved in the enantioseparation of these analytes in their uncharged form by the simultaneous addition of two oppositely charged CD derivatives to the background electrolyte. The combination of the single-isomer cationic CD, permethyl-6-monoamino-6-monodeoxy-beta-CD (PMMAbetaCD) and the single-isomer polyanionic CD, heptakis-6-sulfato-beta-cyclodextrin (HSbetaCD) in a pH 2.5 phosphoric acid-triethanolamine buffer, was designed and employed for the enantioseparation of profens. The improvement in selectivity and resolution can be attributed to the fact that the two CDs, which lead to independent and enantioselective complexation with the analyte enantiomers, have not only opposite effects on the electrophoretic mobility of these compounds but also opposite affinity patterns towards the enantiomers of these compounds. Binding constants for these enantiomers with each CD were determined using linear regression approach, in order to be able to predict the effect of the concentrations of the two CDs on enantiomeric selectivity and resolution in such dual systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号