首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 334 毫秒
1.
《Physics letters. A》2020,384(35):126890
A dual-band and polarization insensitive tunable graphene absorber for THz frequency has been proposed and investigated. The absorber consists of a square graphene ring with a slit at the middle of each side separated from a metallic mirror by a dielectric spacer. Two distinct absorption peaks of 99.87% and 97.82% are observed at 3.92 THz and 6.96 THz, respectively. In addition, the distributions of electric field intensity are also presented for well-recognized the physical origin of such perfect absorption phenomenon. Furthermore, the influence of geometric parameters on the dual-band absorption properties is studied in detail to provide a useful guidance for practical fabrication. The perfect dual-band absorption properties can also be dynamically tuned through the change of the Fermi energy along with large angle insensitivity, both are interesting for real application. The proposed tunable graphene absorber should found potential applications in areas including sensors, modulators, and detectors.  相似文献   

2.
《Current Applied Physics》2019,19(11):1164-1171
In this paper, a dual-band metamaterial absorber (MMA) with wide-angle and polarization-insensitivity is proposed. The MMA consists of two copper layers with a layer of FR-4 between them. And its top layer consists of a cross-shaped resonator and a square ring resonator. The calculation result demonstrates that there are two distinct absorption peaks, whose absorptivity are 99.933% at 3.8441 GHz and 99.99% at 9.1094 GHz. And its thickness is only 1.34% of the wavelength of the lowest absorption frequency. The dual-band MMA shows polarization-insensitivity for normal incident wave and shows high absorptivity in a wide incident angle for both TE and TM polarization wave. In addition, we discuss the working mechanism. The influences of main parameters on the dual-band MMA's absorption are also analyzed. The proposed ultra-thin MMA has simple structure and high absorptivity, which has many potential applications, such as thermal radiometer, detection sensor, stealth technology.  相似文献   

3.
杨鹏  秦晋  徐进  韩天成 《物理学报》2019,68(8):87802-087802
设计并加工了一种超薄柔性透射型吸收器,总体厚度为0.288 mm,可实现柔性弯曲,容易做到与曲面目标共形.该吸收器由三层结构组成,底层是金属光栅,中间为介质层,表面单元由两条平行放置的尺寸不同的金属线组成.仿真和实验结果表明,对横电波在5和7 GHz的吸收分别达到97.5%和96.0%,对横磁波在3.0—6.5 GHz都能保持90%以上的透射率.两个吸收频点可分别独立调节,增加了设计的灵活性.另外,当入射角增大到60°时,该吸收器的性能基本不受影响,表现出良好的广角特性.  相似文献   

4.
In this article, a broadband metamaterial microwave absorber on a low-cost FR-4 Epoxy substrate is proposed. The unit cell of the absorber consists of a staircase shape metallic patch placed on the top of the metal-backed ultrathin dielectric substrate having a thickness of 1.9 mm (0.07 λ0). The absorption of more than 90% is achieved with this proposed low profile single-layer microwave absorber throughout the operation band from 8.86 to 15.5 GHz. The performance is analyzed for different values of incident angle, polarization angle, substrate height, and dielectric constant. The surface current and the power loss density at the top and bottom planes at the two absorption peaks of 9.46 and 13.90 GHz are also analyzed to elaborate the absorption mechanism of the structure. Experimental result closely follows the simulated one. The broadband characteristics of the design with relative absorption bandwidth (RAB) of 54.51% at both TE and TM polarizations of incident wave for a wide incident angles makes it versatile for applications in the X and Ku bands of microwave frequencies. The proposed work is very compact (unit cell size: 0.22 λ0) with ultrathin substrate height (0.07 λ0) and giving RAB performance of 54.51% comparable with that of others. Thus with this single-layer low-cost substrate material a broadband absorber is achieved.  相似文献   

5.
A second-order cross fractal meta-material structure was designed and fabricated in this project. A kind of conventional magnetic material which works at low frequency was used as the absorber substrate. The simulation results demonstrated an absorber band below ?10 dB between 4 and 8 GHz, and there was a 1.7 GHz expansion when the meta-material structure was not loaded. The experiment results indicated a similar absorber band between 3 and 5.5 GHz, which was 1.09 GHz wider than meta-material structure and the absorber band expanded by 88 %. Then we further analyzed the energy distribution on the surface of the meta-material structure which perfectly explained the expansion of the absorption band and implied a way to achieve a lower wider absorber band.  相似文献   

6.
Microwave absorbing materials composed of ordered mesoporous carbon (OMC) as absorbent and paraffin as matrix were prepared, and their electromagnetic and microwave absorbing properties could be tuned by changing the weight fraction of OMC at 2–18 GHz. The minimum reflection loss (RL) value reached ?9.3 dB at 8.0 GHz and the absorption range with RL lower than ?5 dB was obtained at 5.8–14.4 GHz for a single-layer absorber filled with 1.98 wt.% OMC at 3.0 mm. If a double-layer structure was adopted, the total thickness of the absorber could be reduced below 2.0 mm and the effective absorption range (RL<?10 dB) could be obtained at 8.9–14.3 GHz with a minimal RL of ?28.5 dB at 10.6 GHz. This work demonstrated that dielectric composites could be used as excellent absorbers by adopting reasonable multilayer structures.  相似文献   

7.
We propose a periodic structure as an extra absorption layer(i.e., absorber) based on surface plasmon resonance effects, enhancing dual-band absorption in both middle wavelength infrared(MWIR) and long wavelength infrared(LWIR)regions. Periodic gold disks are selectively patterned onto the top layer of suspended SiN/VO_2/SiN sandwich-structure.We employ the finite element method to model this structure in COMSOL Multiphysics including a proposed method of modulating the absorption peak. Simulation results show that the absorber has two absorption peaks at wavelengths λ =4.8 μm and λ = 9 μm with the absorption magnitudes more than 0.98 and 0.94 in MWIR and LWIR regions, respectively. In addition, the absorber achieves broad spectrum absorption in LWIR region, in the meanwhile, tunable dual-band absorption peaks can be achieved by variable heights of cavity as well as diameters and periodicity of disk. Thus, this designed absorber can be a good candidate for enhancing the performance of dual band uncooled infrared detector, furthermore, the manufacturing process of cavity can be easily simplified so that the reliability of such devices can be improved.  相似文献   

8.
The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the bandwidth of -10-dB reflection loss for PUFA is broadened from 7.4 GHz to 9.1 GHz, which is attributed to the overlap of two absorption peaks originating from CMMA and PUFA, respectively. The values of the two absorption peaks located at 10.15 GHz and 14.7 GHz are -38.44 dB and -40.91 dB, respectively. Additionally, distribution of surface current,electromagnetic field and power loss density are introduced to investigate the absorption mechanism of the CMMA. The electromagnetic field distribution of the double-layered PUFA and the three-layered hybrid absorber are comparatively analyzed to ascertain the influence of CMMA. The results show that the proposed hybrid absorber can be applied to the anti-electromagnetic interference and stealth technology.  相似文献   

9.
This paper presents a multi-band metamaterial absorber comprising three multi-gap split-ring resonators (SRRs) with different radii and ring widths, designed in combinatorial approach. Experiments demonstrate that it can perform absorption peaks at three resonant frequencies 7.10 GHz, 10.04 GHz, and 17.44 GHz with the absorption of 99.90%, 99.91%, and 99.68%, respectively. The physical mechanism of metamaterial absorber was explained through numerical calculation and simulation, which showed that three absorption peaks were caused respectively by the three four-gap SRRs. The absorber is insensitive to incident angles and polarization states, so it has broad prospect of application.  相似文献   

10.
杨森  袁苏  王佳云 《光学学报》2021,41(2):116-124
提出了一种基于方环-金属线结构的光激发动态可切换双频太赫兹超材料吸收器.通过调节嵌入在结构间隙中的光敏硅和锗的绝缘/导通状态,该吸收器可在不改变结构的前提下在三个双频完美吸收态之间自由切换.结果表明:当没有光泵浦时,该吸收器工作在0.987 THz和1.767 THz双频吸收态;当采用800 nm激光泵浦时,该吸收器可...  相似文献   

11.
A metamaterial absorber is proposed that functions in the medium- (3–5 µm) and long-wavelength (8–12 µm) infrared (medium-wavelength infrared, MWIR, and long-wavelength infrared, LWIR, respectively) regions. The proposed design, which consists of periodic cells, can be tuned to achieve single-band or dual-band light absorption by changing the periodicity of the structure. Each cell forming the metamaterial absorber consists of a bottom metal plate (Al), a top metal disk (Ti), and an intermediate dielectric medium (Si or ZnS) in which a metal disk (Ti) is embedded. For a period of 0.85 µm, the absorber achieves broadband absorption in the LWIR region, with an average absorption of 92.1%. Further, the absorber shows acceptable tolerance to irradiation at oblique incidence. For a period of 2 µm, a peak absorption of 99.05% is achieved in the MWIR region, thereby providing dual-band absorption. Tuning the periodicity of the structure enhances the localized surface plasmon resonance, with the absorption mechanism explained by establishing an equivalent parallel LC circuit. The absorption properties demonstrated by the proposed metamaterial absorber are promising for thermal imaging and infrared spectroscopy.  相似文献   

12.
基于超材料的微波双波段吸收器   总被引:2,自引:0,他引:2       下载免费PDF全文
沈晓鹏  崔铁军  叶建祥 《物理学报》2012,61(5):58101-058101
基于闭合双环单元结构, 设计、仿真、测试了对偏振无依赖性的双波段超材料吸收器. 实验结果表明, 该设计在频率4.06 GHz和6.66 GHz存在两个显著吸收峰, 吸收率分别为99.60%和95.83%, 并且在入射角达到50°时, 吸收率仍然保持在83%以上. 由于单元结构具有旋转对称性, 使得该吸收器对偏振不敏感, 能同时实现横电波和横磁波的双波段吸收. 吸收频率决定于闭合环大小, 调节闭合环尺寸能够灵活实现特定频率的吸收. 这些优点使我们的设计在多频谱成像、热辐射探测等应用中表现出较大的潜力.  相似文献   

13.
The influence of the gap on the absorption performance of the conventional split ring resonator(SRR) absorber is investigated at microwave frequencies. Our simulated results reveal that the geometry of the square SRR can be equivalent to a Jerusalem cross(JC) resonator and its corresponding metamaterial absorber(MA) is changed to a JC absorber. The JC MA exhibits an experimental absorption peak of 99.1% at 8.72 GHz, which shows an excellent agreement with our simulated results. By simply assembling several JCs with slightly different geometric parameters next to each other into a unit cell, a perfect multi-band absorption can be effectively obtained. The experimental results show that the MA has four distinct and strong absorption peaks at 8.32 GHz, 9.8 GHz, 11.52 GHz and 13.24 GHz. Finally, the multi-reflection interference theory is introduced to interpret the absorption mechanism.  相似文献   

14.
We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5–20.0 GHz) and Ka (28.8–34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.  相似文献   

15.
In this paper, we present a design, simulation and experimental measurement of a metamaterial absorber (MMA) in the microwave regime. The proposed MMA structure consists of periodic cross electric resonators separated from the ground metal plane using a magnetic composite layer. The broadband absorption can be ascribed to the periodic cross electric resonators. The anti-parallel currents are observed at the peak frequency on the surface of the MMA and the ground metal plane, respectively, and thus the coupled resonance magnetic field occurs in the magnetic medium resulting in the magnetic loss. The new absorption peak located at 2.8 GHz broadens the whole absorption spectrum. The frequency of this peck is lower than that of the cross resonator of 3.7 GHz, suggesting the distinguish resonance mechanism: the absorbing properties are ascribed to the phase cancellation, Ohmic loss, dielectric loss at the end of the cross pattern, and the magnetic loss caused by the above mentioned coupled magnetic field. The obvious absorption peak at 2.8 GHz is also observed experimentally verifying the simulation result. All these results indicate the proposed MMA structure is promising for microwave absorbing application.  相似文献   

16.
A tunable dual-band terahertz absorber is designed and investigated. The unit cell of the proposed absorber consists of a graphene monolayer on a guided-mode resonant filter. The graphene absorber presents > 40% absorption at two resonance frequencies, which is attributed to the guided mode resonances with different mode numbers. The electric field intensity distribution is analyzed to disclose the physical mechanism of such a dual-band absorption effect. Furthermore,the influence of optical properties of graphene, including Fermi level and relaxation time, on the absorption spectra are investigated. Finally, the influence of geometric parameters on the absorption spectrum is studied, which will provide useful guidance for the fabrication of this absorber. We believe that the results may be useful for developing the next-generation graphene-based optoelectronic devices.  相似文献   

17.
In this paper, we report the design, simulation, and measurements of a broadband metamaterial absorber (MA) based on a periodic array of multi-layer cross-structure resonators. A perfect narrowband MA consists of cross-structure resonator, dielectric substrate, and continuous metal films, and the absorption frequency can be tunable by changing the geometrical parameters based on L-C resonance circuit theory. Furthermore, the absorption band of our design is effectively extended by simply stacking several such structural layers with different geometrical dimensions. Finally, the 4-layer cross-structure MA is only 2 mm, which can achieve a full width at half maximum (FWHM) bandwidth of 2 GHz by numerical simulations, and 90 % bandwidth of 1.9 GHz by experiments.  相似文献   

18.
一种温控的可调表面等离子体光学器件   总被引:1,自引:1,他引:0  
张兵心  陈淑芬  付雷  邹正峰  孟彦彬 《光学学报》2012,32(7):723005-251
设计加工了一个三层结构的表面等离子体光学吸收器件,表层结构为规则排列的金质椭圆形微粒。入射电磁波与椭圆形金粒作用激发表面等离子体共振时,由于沿长短轴方向谐振频率不同,使得该器件实现了在近红外谱段两个频率处对入射光近100%的吸收。实验样品用电子束曝光技术加工,实验测量与仿真设计结果一致。此外,由于改变器件表面介质的折射率可以有效调谐器件的谐振特性,通过在器件表面覆盖一向列型液晶层并由温度控制液晶层的折射率,实现了一种温控的可调表面等离子光学吸收器件,调节过程简单可靠并且可重复实现,调节范围达22nm。该器件由于其高吸收效率和可调谐特性,可在太阳能电池以及未来光子集成电路等方面得到重要应用。  相似文献   

19.
A single-/dual-band metamaterial absorber (MMA) based on cross-circular-loop resonator (CCLR) with shorted stubs is discussed at microwave frequencies in this paper. The single-/dual-band characteristics are realized by adjusting the positions of the shorted stubs. We briefly analyze the equivalent circuit model of the MMA unit cell and then numerically and experimentally investigate the near-perfect absorptions in such two conditions (single- and dual-band). The results indicate that the proposed MMA exhibits near-perfect impedance matching with free space and high absorptivity of 99.74?% at 8.65?GHz for single-band condition, and absorptivities of 99.75?% and 97.35?% at 8.525 and 9.1?GHz, respectively, for dual-band condition. It also exhibits a wide range of angles of incidence for both transverse electric (TE) and transverse magnetic (TM) radiation. The two operating frequency bands, in dual-band condition, can be further controlled by adjusting the positions of shorted stubs or adding other shorted stubs. So it opens the way to fabricate controllable MMAs, and so controllable perfectly matched layers and bolometers.  相似文献   

20.
We develop a simple new design for a multi-band metamaterial absorber (MTMA) for radar applications. Computer Simulation Technology (CST) Studio Suite 2018 was used for the numerical analysis and absorption study. The simulated results show four high peaks at 5.6 GHz, 7.6 GHz, 10.98 GHz, and 11.29 GHz corresponding to absorption characteristics of 100%, 100%, 99%, and 99%, respectively. Furthermore, two different structures were designed and compared with the proposed MTMA. The proposed structure remained insensitive for any incident angle and polarization angle from 0° to 60°. Moreover, negative constitutive parameters were retrieved numerically. To support the simulated results, the proposed design was fabricated by using a computer numerical control-based printed circuit board prototyping machine and tested experimentally in a microwave laboratory. The absorption mechanism of the proposed MTMA is presented through the surface current and electric field distributions. The novelties of the proposed structure are a simple and new design, ease of fabrication, low cost, durability, suitability for real-time applications and long-term stability given the fabrication technique and non-destructive measurement method and very high absorption. The proposed structure has potential applications in C and X band frequency ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号