首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the paper, (Abbassi and Kowalski, Ann Glob Anal Geom, 38: 11–20, 2010) the authors study Einstein Riemannian $g$ natural metrics on unit tangent sphere bundles. In this study, we equip the unit tangent sphere bundle $T_1 M$ of a Riemannian manifold $(M,g)$ with an arbitrary Riemannian $g$ natural metric $\tilde{G}$ and we show that if the geodesic flow $\tilde{\xi }$ is the potential vector field of a Ricci soliton $(\tilde{G},\tilde{\xi },\lambda )$ on $T_1M,$ then $(T_1M,\tilde{G})$ is Einstein. Moreover, we show that the Reeb vector field of a contact metric manifold is an infinitesimal harmonic transformation if and only if it is Killing. Thus, we consider a natural contact metric structure $(\tilde{G}, \tilde{\eta }, \tilde{\varphi }, \tilde{\xi })$ over $T_1 M$ and we show that the geodesic flow $\tilde{\xi }$ is an infinitesimal harmonic transformation if and only if the structure $(\tilde{G}, \tilde{\eta }, \tilde{\varphi },\tilde{\xi })$ is Sasaki $\eta $ -Einstein. Consequently, we get that $(\tilde{G},\tilde{\xi }, \lambda )$ is a Ricci soliton if and only if the structure $(\tilde{G}, \tilde{\eta }, \tilde{\varphi }, \tilde{\xi })$ is Sasaki-Einstein with $\lambda = 2(n-1) >0.$ This last result gives new examples of Sasaki–Einstein structures.  相似文献   

2.
Let G be a commutative group, written additively, with a neutral element 0, and let K be a finite group. Suppose that K acts on G via group automorphisms ${G \ni a \mapsto ka \in G}$ , ${k \in K}$ . Let ${{\mathfrak{H}}}$ be a complex Hilbert space and let ${{\mathcal L}({\mathfrak{H}})}$ be the algebra of all bounded linear operators on ${{\mathfrak{H}}}$ . A mapping ${u \colon G \to {\mathcal L}({\mathfrak{H}})}$ is termed a K-spherical function if it satisfies (1) ${|K|^{-1} \sum_{k\in K} u (a+kb)=u (a) u (b)}$ for any ${a,b\in G}$ , where |K| denotes the cardinality of K, and (2) ${u (0) = {\rm id}_{\mathfrak {H}},}$ where ${{\rm id}_{\mathfrak {H}}}$ designates the identity operator on ${{\mathfrak{H}}}$ . The main result of the paper is that for each K-spherical function ${u \colon G \to {\mathcal {L}}({\mathfrak {H}})}$ such that ${\| u \|_{\infty} = \sup_{a\in G} \| u (a)\|_{{\mathcal L}({\mathfrak{H}})} < \infty,}$ there is an invertible operator S in ${{\mathcal L}({\mathfrak{H}})}$ with ${\| S \| \, \| S^{-1}\| \leq |K| \, \| u \|_{\infty}^2}$ such that the K-spherical function ${{\tilde{u}} \colon G \to {\mathcal L}({\mathfrak{H}})}$ defined by ${{\tilde{u}}(a) = S u (a) S^{-1},\,a \in G,}$ satisfies ${{\tilde{u}}(-a) = {\tilde{u}}(a)^*}$ for each ${a \in G}$ . It is shown that this last condition is equivalent to insisting that ${{\tilde{u}}(a)}$ be normal for each ${a \in G}$ .  相似文献   

3.
Let ${(\mathcal{M}, \tilde{g})}$ be an N-dimensional smooth compact Riemannian manifold. We consider the problem ${\varepsilon^2 \triangle_{\tilde{g}} \tilde{u} + V(\tilde{z})\tilde{u}(1-\tilde{u}^2)=0\; {\rm in}\; \mathcal{M}}$ , where ${\varepsilon > 0}$ is a small parameter and V is a positive, smooth function in ${\mathcal{M}}$ . Let ${\kappa \subset \mathcal{M}}$ be an (N ? 1)-dimensional smooth submanifold that divides ${\mathcal{M}}$ into two disjoint components ${\mathcal{M}_{\pm}}$ . We assume κ is stationary and non-degenerate relative to the weighted area functional ${\int_{\kappa}V^{\frac{1}{2}}}$ . For each integer m ≥ 2, we prove the existence of a sequence ${\varepsilon = \varepsilon_\ell \rightarrow 0}$ , and two opposite directional solutions with m-transition layers near κ, whose mutual distance is ${{\rm O}(\varepsilon | \log \varepsilon | )}$ . Moreover, the interaction between neighboring layers is governed by a type of Jacobi–Toda system.  相似文献   

4.
5.
Let $\mathcal{X}$ be a metric space with doubling measure and L a nonnegative self-adjoint operator in $L^{2}(\mathcal{X})$ satisfying the Davies–Gaffney estimates. Let $\varphi:\mathcal{X}\times[0,\infty)\to[0,\infty)$ be a function such that φ(x,?) is an Orlicz function, $\varphi(\cdot,t)\in\mathbb{A}_{\infty}(\mathcal{X})$ (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index I(φ)∈(0,1], and it satisfies the uniformly reverse Hölder inequality of order 2/[2?I(φ)]. In this paper, the authors introduce a Musielak–Orlicz–Hardy space $H_{\varphi,L}(\mathcal{X})$ , by the Lusin area function associated with the heat semigroup generated by L, and a Musielak–Orlicz BMO-type space $\mathrm{BMO}_{\varphi,L}(\mathcal{X})$ , which is further proved to be the dual space of $H_{\varphi,L}(\mathcal{X})$ and hence whose φ-Carleson measure characterization is deduced. Characterizations of $H_{\varphi,L}(\mathcal{X})$ , including the atom, the molecule, and the Lusin area function associated with the Poisson semigroup of L, are presented. Using the atomic characterization, the authors characterize $H_{\varphi,L}(\mathcal{X})$ in terms of the Littlewood–Paley $g^{\ast}_{\lambda}$ -function $g^{\ast}_{\lambda,L}$ and establish a Hörmander-type spectral multiplier theorem for L on $H_{\varphi,L}(\mathcal{X})$ . Moreover, for the Musielak–Orlicz–Hardy space H φ,L (? n ) associated with the Schrödinger operator L:=?Δ+V, where $0\le V\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{n})$ , the authors obtain its several equivalent characterizations in terms of the non-tangential maximal function, the radial maximal function, the atom, and the molecule; finally, the authors show that the Riesz transform ?L ?1/2 is bounded from H φ,L (? n ) to the Musielak–Orlicz space L φ (? n ) when i(φ)∈(0,1], and from H φ,L (? n ) to the Musielak–Orlicz–Hardy space H φ (? n ) when $i(\varphi)\in(\frac{n}{n+1},1]$ , where i(φ) denotes the uniformly critical lower type index of φ.  相似文献   

6.
We generalize the well-known Lax-Milgram theorem on the Hilbert space to that on the Banach space. Suppose that ${a(\cdot, \cdot)}$ is a continuous bilinear form on the product ${X\times Y}$ of Banach spaces X and Y, where Y is reflexive. If null spaces N X and N Y associated with ${a(\cdot, \cdot)}$ have complements in X and in Y, respectively, and if ${a(\cdot, \cdot)}$ satisfies certain variational inequalities both in X and in Y, then for every ${F \in N_Y^{\perp}}$ , i.e., ${F \in Y^{\ast}}$ with ${F(\phi) = 0}$ for all ${\phi \in N_Y}$ , there exists at least one ${u \in X}$ such that ${a(u, \varphi) = F(\varphi)}$ holds for all ${\varphi \in Y}$ with ${\|u\|_X \le C\|F\|_{Y^{\ast}}}$ . We apply our result to several existence theorems of L r -solutions to the elliptic system of boundary value problems appearing in the fluid mechanics.  相似文献   

7.
In this note, we prove a sharp lower bound for the log canonical threshold of a plurisubharmonic function ${\varphi}$ with an isolated singularity at 0 in an open subset of ${\mathbb{C}^n}$ . This threshold is defined as the supremum of constants c > 0 such that ${e^{-2c\varphi}}$ is integrable on a neighborhood of 0. We relate ${c(\varphi)}$ to the intermediate multiplicity numbers ${e_j(\varphi)}$ , defined as the Lelong numbers of ${(dd^c\varphi)^j}$ at 0 (so that in particular ${e_0(\varphi)=1}$ ). Our main result is that ${c(\varphi)\geqslant\sum_{j=0}^{n-1} e_j(\varphi)/e_{j+1}(\varphi)}$ . This inequality is shown to be sharp; it simultaneously improves the classical result ${c(\varphi)\geqslant 1/e_1(\varphi)}$ due to Skoda, as well as the lower estimate ${c(\varphi)\geqslant n/e_n(\varphi)^{1/n}}$ which has received crucial applications to birational geometry in recent years. The proof consists in a reduction to the toric case, i.e. singularities arising from monomial ideals.  相似文献   

8.
We introduce vanishing generalized Morrey spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}$ with a general function ${\varphi(x, r)}$ defining the Morrey-type norm. Here ${\Pi \subseteq \Omega}$ is an arbitrary subset in Ω including the extremal cases ${\Pi = \{x_0\}, x_0 \in \Omega}$ and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}$ we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}$ -theorem for the potential operator I α . The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on ${\varphi(x, r)}$ . No monotonicity type condition is imposed on ${\varphi(x, r)}$ . In case ${\varphi}$ has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function ${\varphi}$ . The proofs are based on pointwise estimates of the modulars defining the vanishing spaces  相似文献   

9.
Let X be a realcompact space and ${H:C(X)\rightarrow\mathbb{R}}$ be an identity and order preserving group homomorphism. It is shown that H is an evaluation at some point of X if and only if there is ${\varphi\in C(\mathbb{R})}$ with ${\varphi(r)>\varphi(0)}$ for all ${r\in\mathbb{R}-\{0\}}$ for which ${H\circ\varphi=\varphi\circ H}$ . This extends (and unifies) classical results by Hewitt and Shirota.  相似文献   

10.
Let V, $\tilde{V}$ be hypersurface germs in ? m , each having a quasi-homogeneous isolated singularity at the origin. We show that the biholomorphic equivalence problem for V, $\tilde{V}$ reduces to the linear equivalence problem for certain polynomials P, $\tilde{P}$ arising from the moduli algebras of V, $\tilde{V}$ . The polynomials P, $\tilde{P}$ are completely determined by their quadratic and cubic terms, hence the biholomorphic equivalence problem for V, $\tilde{V}$ in fact reduces to the linear equivalence problem for pairs of quadratic and cubic forms.  相似文献   

11.
Let ${N \geq 3}$ and u be the solution of u t = Δ log u in ${\mathbb{R}^N \times (0, T)}$ with initial value u 0 satisfying ${B_{k_1}(x, 0) \leq u_{0} \leq B_{k_2}(x, 0)}$ for some constants k 1k 2 > 0 where ${B_k(x, t) = 2(N - 2)(T - t)_{+}^{N/(N - 2)}/(k + (T - t)_{+}^{2/(N - 2)}|x|^{2})}$ is the Barenblatt solution for the equation and ${u_0 - B_{k_0} \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 if ${N \geq 4}$ . We give a new different proof on the uniform convergence and ${L^1(\mathbb{R}^N)}$ convergence of the rescaled function ${\tilde{u}(x, s) = (T - t)^{-N/(N - 2)}u(x/(T - t)^{-1/(N - 2)}, t), s = -{\rm log}(T - t)}$ , on ${\mathbb{R}^N}$ to the rescaled Barenblatt solution ${\tilde{B}_{k_0}(x) = 2(N - 2)/(k_0 + |x|^{2})}$ for some k 0 > 0 as ${s \rightarrow \infty}$ . When ${N \geq 4, 0 \leq u_0(x) \leq B_{k_0}(x, 0)}$ in ${\mathbb{R}^N}$ , and ${|u_0(x) - B_{k_0}(x, 0)| \leq f \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 and some radially symmetric function f, we also prove uniform convergence and convergence in some weighted L 1 space in ${\mathbb{R}^N}$ of the rescaled solution ${\tilde{u}(x, s)}$ to ${\tilde{B}_{k_0}(x)}$ as ${s \rightarrow \infty}$ .  相似文献   

12.
13.
Suppose that X is a right process which is associated with a non-symmetric Dirichlet form $(\mathcal{E},D(\mathcal{E}))$ on L 2(E;m). For $u\in D(\mathcal{E})$ , we have Fukushima??s decomposition: $\tilde{u}(X_{t})-\tilde{u}(X_{0})=M^{u}_{t}+N^{u}_{t}$ . In this paper, we investigate the strong continuity of the generalized Feynman?CKac semigroup defined by $P^{u}_{t}f(x)=E_{x}[e^{N^{u}_{t}}f(X_{t})]$ . Let $Q^{u}(f,g)=\mathcal{E}(f,g)+\mathcal{E}(u,fg)$ for $f,g\in D(\mathcal{E})_{b}$ . Denote by J 1 the dissymmetric part of the jumping measure J of $(\mathcal{E},D(\mathcal{E}))$ . Under the assumption that J 1 is finite, we show that $(Q^{u},D(\mathcal{E})_{b})$ is lower semi-bounded if and only if there exists a constant ?? 0??0 such that $\|P^{u}_{t}\|_{2}\leq e^{\alpha_{0}t}$ for every t>0. If one of these conditions holds, then $(P^{u}_{t})_{t\geq0}$ is strongly continuous on L 2(E;m). If X is equipped with a differential structure, then this result also holds without assuming that J 1 is finite.  相似文献   

14.
We consider weak solutions to nonlinear elliptic systems in a W 1,p -setting which arise as Euler equations to certain variational problems. The solutions are assumed to be stationary in the sense that the differential of the variational integral vanishes with respect to variations of the dependent and independent variables. We impose new structure conditions on the coefficients which yield everywhere ${\mathcal{C}^{\alpha}}$ -regularity and global ${\mathcal{C}^{\alpha}}$ -estimates for the solutions. These structure conditions cover variational integrals like ${\int F(\nabla u)\; dx}$ with potential ${F(\nabla u):=\tilde F (Q_1(\nabla u),\ldots, Q_N(\nabla u))}$ and positively definite quadratic forms in ${\nabla u}$ defined as ${Q_i(\nabla u)=\sum_{\alpha \beta} a_i^{\alpha \beta} \nabla u^\alpha \cdot \nabla u^\beta}$ . A simple example consists in ${\tilde F(\xi_1,\xi_2):= |\xi_1|^{\frac{p}{2}} + |\xi_2|^{\frac{p}{2}}}$ or ${\tilde F(\xi_1,\xi_2):= |\xi_1|^{\frac{p}{4}}|\xi_2|^{\frac{p}{4}}}$ . Since the Q i need not to be linearly dependent our result covers a class of nondiagonal, possibly nonmonotone elliptic systems. The proof uses a new weighted norm technique with singular weights in an L p -setting.  相似文献   

15.
We consider singular solutions of the functional equation ${f(xf(x)) = \varphi (f(x))}$ where ${\varphi}$ is a given and f an unknown continuous map ${\mathbb R_{+} \rightarrow \mathbb R_{+}}$ . A solution f is regular if the sets ${R_f \cap (0, 1]}$ and ${R_f \cap [1, \infty)}$ , where R f is the range of f, are ${\varphi}$ -invariant; otherwise f is singular. We show that for singular solutions the associated dynamical system ${({R_f}, \varphi|_{R_f})}$ can have strange properties unknown for the regular solutions. In particular, we show that ${\varphi |_{R_f}}$ can have a periodic point of period 3 and hence can be chaotic in a strong sense. We also provide an effective method of construction of singular solutions.  相似文献   

16.
In this paper we characterize the so called uniformly rectifiable sets of David and Semmes in terms of the Wasserstein distance W 2 from optimal mass transport. To obtain this result, we first prove a localization theorem for the distance W 2 which asserts that if??? and ?? are probability measures in ${{\mathbb{R}^n}}$ , ${{\varphi}}$ is a radial bump function smooth enough so that ${{\int \varphi d \mu \gtrsim 1}}$ , and??? has a density bounded from above and from below on supp( ${{\varphi}}$ ), then ${{W_2(\varphi \mu, a\varphi \nu) \leq cW_2(\mu, \nu)}}$ , where ${{a = \int \varphi d\mu/ \int \varphi d\nu}}$ .  相似文献   

17.
18.
We study two metrics, the quasihyperbolic metric and the distance ratio metric of a subdomain $G \subset {\mathbb R}^n$ . In the sequel, we investigate a class of domains, so called $\varphi $ -uniform domains, defined by the property that these two metrics are comparable with respect to a homeomorphism $\varphi $ from $[0,\infty )$ to itself. Finally, we discuss a number of stability properties of $\varphi $ -uniform domains. In particular, we show that the class of $\varphi $ -uniform domains is stable in the sense that removal of a geometric sequence of points from a $\varphi $ -uniform domain yields a $\varphi _1$ -uniform domain.  相似文献   

19.
Let $\{\varphi _n(z)\}_{n\ge 0}$ be a sequence of inner functions satisfying that $\zeta _n(z):=\varphi _n(z)/\varphi _{n+1}(z)\in H^\infty (z)$ for every $n\ge 0$ and $\{\varphi _n(z)\}_{n\ge 0}$ has no nonconstant common inner divisors. Associated with it, we have a Rudin type invariant subspace $\mathcal{M }$ of $H^2(\mathbb{D }^2)$ . The ranks of $\mathcal{M }\ominus w\mathcal{M }$ for $\mathcal{F }_z$ and $\mathcal{F }^*_z$ respectively are determined, where $\mathcal{F }_z$ is the fringe operator on $\mathcal{M }\ominus w\mathcal{M }$ . Let $\mathcal{N }= H^2(\mathbb{D }^2)\ominus \mathcal{M }$ . It is also proved that the rank of $\mathcal{M }\ominus w\mathcal{M }$ for $\mathcal{F }^*_z$ equals to the rank of $\mathcal{N }$ for $T^*_z$ and $T^*_w$ .  相似文献   

20.
Let ${I\subset\mathbb{R}}$ be a nonvoid open interval and let L : I 2I be a fixed strict mean. A function M : I 2I is said to be an L-conjugate mean on I if there exist ${p,q\in\,]0,1]}$ and ${\varphi\in CM(I)}$ such that $$M(x,y):=\varphi^{-1}(p\varphi(x)+q\varphi(y)+(1-p-q) \varphi(L(x,y)))=:L_\varphi^{(p,q)}(x,y),$$ for all ${x,y\in I}$ . Here L(x, y) : = A χ(x, y) ${(x,y\in I)}$ is a fixed quasi-arithmetic mean with the fixed generating function ${\chi\in CM(I)}$ . We examine the following question: which L-conjugate means are weighted quasi-arithmetic means with weight ${r\in\, ]0,1[}$ at the same time? This question is a functional equation problem: Characterize the functions ${\varphi,\psi\in CM(I)}$ and the parameters ${p,q\in\,]0,1]}$ , ${r\in\,]0,1[}$ for which the equation $$L_\varphi^{(p,q)}(x,y)=L_\psi^{(r,1-r)}(x,y)$$ holds for all ${x,y\in I}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号