首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents recently developed Enhanced Multivariance Product Representation (EMPR) method for multivariate functions. EMPR disintegrates a multivariate function to components which are respectively constant, univariate, bivariate and so on in ascending multivariance. Although the EMPR method has the same philosophy with the High Dimensional Model Representation (HDMR) method, it has been proposed to get better quality than HDMR’s with the help of the support functions. For this purpose, we investigate the EMPR truncation qualities with respect to the selection of the support functions. The obtained results and a number of numerical implementations to show the efficiency of the method are also given in this paper.  相似文献   

2.
This paper focuses on the Logarithmic High Dimensional Model Representation (Logarithmic HDMR) method which is a divide–and–conquer algorithm developed for multivariate function representation in terms of less-variate functions to reduce both the mathematical and the computational complexities. The main purpose of this work is to bypass the evaluation of N–tuple integrations appearing in Logarithmic HDMR by using the features of a new theorem named as Fluctuationlessness Approximation Theorem. This theorem can be used to evaluate the complicated integral structures of any scientific problem whose values can not be easily obtained analytically and it brings an approximation to the values of these integrals with the help of the matrix representation of functions. The Fluctuation Free Multivariate Integration Based Logarithmic HDMR method gives us the ability of reducing the complexity of the scientific problems of chemistry, physics, mathematics and engineering. A number of numerical implementations are also given at the end of the paper to show the performance of this new method.  相似文献   

3.
This work focuses on the utilization of a very recently developed decomposition method, weighted tridiagonal matrix enhanced multivariance products representation (WTMEMPR) which can be equivalently used on continuous functions, and, multiway arrays after appropriate unfoldings. This recursive method has been constructed on the Bivariate EMPR and the remainder term of each step therein has been expanded into EMPR from step to step until no remainder term appears in one of the consecutive steps. The resulting expansion can also be expressed in a three factor product representation whose core factor is a tridiagonal matrix. The basic difference and novelty here is the non-constant weight utilization and the applications on certain chemical system data sets to show the efficiency of the WTMEMPR truncation approximants.  相似文献   

4.
A consistent set of fitted electronic density functions was generated for the elements from hydrogen to radon using an algorithm based on the elementary Jacobi rotations (EJR) technique. The main distinguishing attribute of this fitting procedure is the production of approximated electronic density functions with positive definite expansion coefficients; in this way, the statistical meaning of the probability distribution is preserved. The methodology, which was fully described previously, was modified in this work to improve and accelerate the fitting procedure. This variation concerns the optimization method employed to obtain the optimal angle of the EJR, implementing an algorithm based on a Taylor series expansion. Additionally, a new 1S-Type Gaussian basis set for atoms H to Rn is presented, that was fitted from a primitive basis set of Huzinaga. Fitted density functions facilitate theoretical calculations over large molecules and may be employed in many areas of computational chemistry, for example, in quantum similarity measures (QSM). To verify the basis set, a sound example related to QSM applications is given. This corresponds to the comparison of experimental structures obtained from X-ray determination for cis-diamminedichloroplatinum(II) complex with optimized molecular geometries using several theoretical methods to quantify the differences between the analyzed levels of theory. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 911–920, 1999  相似文献   

5.
High Dimensional Model Representation (HDMR) method is a technique that represents a multivariate function in terms of less-variate functions. Even though the method has a finite expansion, to determine the components of this expansion is very expensive due to integration based natures of the components. Hence, the HDMR expansion is generally truncated at certain multivariance level and such approximations are produced to represent the given multivariate function approximately. The weight function selection becomes an important issue for the HDMR based applications when it is desired to give different importances to function values at different points. An appropriately chosen weight function may increase the quality of the approximation incredibly. This work aims at a multivariate weight function optimization to obtain high quality approximations through the HDMR method to represent multivariate functions. The proposed optimization considers constancy measurer maximization which produces a quadratic vector equation to be solved. Another contribution of this work is to use a recently developed method, fluctuation free integration, with HDMR, to solve this equation easily. This work is an extension of a previous work about weight optimization in HDMR for univariate functions.  相似文献   

6.
A new strategy to solve the Kohn-Sham equations of density functional theory is presented which avoids diagonalization within a finite basis-set expansion. The implementation is based on an expansion of orbitals in terms of Gaussian functions and it is shown that the algorithm is competitive with more conventional approaches. The new approach is based on conjugated gradients optimization augmented by an approximate second-order update together with convergence acceleration. Computational advantages of the new algorithm are discussed under the special aspect of parallel computing. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
The full perturbation expansion for the response (or density—density correlation) function is examined in order to provide a useful general theory of excitation energies, oscillator strengths, dynamic polarizabilities, etc., that is more accurate than the random phase approximation. It is first shown how the formal partition of the diagrammatic version of the perturbation expansion into reducible and irreducible diagrams is generally useless as the latter category contains all the difficult terms which have heretofore resisted analysis in all but a haphazard form. It is then shown how the diagram for the response function can be partitioned into “correlated” and “uncorrelated” subsets. Restricting attention to the particle—hole blocks of the full response function, the “uncorrelated” diagrams desecribe the propagation of a particle—hole pair in an N-electron system where the particle and hole are each interacting with the remaining electrons but they are not interacting with each other. The “correlated” diagrams are those containing the hole—particle interactions, and, by defining a new class of reducible and irreducible diagrams, these are all summed to provide a perturbation expansion of the effective two-body hole—particle interaction that appears in the inverse of the response function. The “uncorrelated” diagrams are further partitioned into two sets, one of which is summed to all orders, while the other set is inverted in an order by order fashion. The final result presents a perturbation expansion for the inverse of the response function that is analogous to the Dyson equation for one-electron Green functions. Maintaining the perturbation expansion through first order for the inverse of the response function yields the eigenvalue equation of the familiar random phase approximation, while truncation at second order provides the most advanced theories that have been generated by the equations-of-motion method.  相似文献   

8.
A modified partial least squares (PLS) algorithm is presented on the basis of a novel weight updating strategy. The new weight can handle situations with directions in X space having large variance unrelated to Y , whereas the linear PLS may not work well. In the proposed algorithm, the slice transform technique is introduced to provide a piecewise linear representation of the weight vectors. Then, the corresponding mapping functions are estimated by a least square criterion of the inner relation between the observed variables and the score of response variables. At last, weight vectors are updated by the obtained mapping functions, and the corresponding scores and loadings are calculated with the new weights. An optimal piecewise linear replacements of the PLS weights are achieved by the proposed method. The predictive performances of the new approach and other methods are compared statistically using the Wilcoxon signed rank test. Experimental results show that the proposed method can achieve simpler models, whereas the model performances are at least comparable with PLS and other methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Although the HDMR decomposition has become an important tool for the understanding of high dimensional functions, the fundamental conjecture underlying its practical utility is still open for theoretical analysis. In this paper, we introduce the HDMR decomposition in conjunction with the Fourier-HDMR approximation leading to the following conclusions: (1) we suggest a type of Fourier-HDMR approximation for certain classes of differentiable functions; (2) utilizing the Fourier-HDMR method, we prove the fundamental conjecture about the dominance of low order terms in the HDMR expansion under relevant conditions, and we also obtain error estimates of the truncated HDMR expansion up to order u; (3) we prove the domain decomposition approximation theorem which shows that the global Fourier-HDMR approximation is not always optimal for a given accuracy order; (4) and finally, a piecewise Fourier-HDMR approach is discussed for high dimensional modeling. These results help to further understand how to efficiently represent the high dimensional functions.  相似文献   

10.
The application of the Σ-separation method to the calculation of multicenter two-electron molecular integrals with Slater-type basis functions is reported. The approach is based on the approximation of a scalar component of the two-center atomic density by a two-center expansion over Slater-type functions. A least-squares fit was used to determine the coefficients of the expansion. The angular multipliers of the atomic density were treated exactly. It is shown that this approach can serve as a sufficiently accurate and fast algorithm for the calculation of multicenter two-electron molecular integrals with Slater-type basis functions. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
A new calibration transfer method that applies canonical correlation analysis (CCA) to transfer the informative components extracted from a spectral dataset is proposed to reduce the interference of noise, background and non‐predicted properties. This method employs the partial least squares method to extract the informative components related to the predicted properties from the raw spectra and then corrects the informative components based on CCA. The performance of this algorithm was tested using three pairs of spectra batches: two pairs of corn spectra and one pair of tri‐component solvent spectra. The results showed that this method can significantly reduce prediction errors compared with CCA and piecewise direct standardization. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Herein, we demonstrate that a very familiar, yet underutilized, physical parameter—gas pressure—can serve as signal readout for highly sensitive bioanalysis. Integration of a catalyzed gas‐generation reaction with a molecular recognition component leads to significant pressure changes, which can be measured with high sensitivity using a low‐cost and portable pressure meter. This new signaling strategy opens up a new way for simple, portable, yet highly sensitive biomedical analysis in a variety of settings.  相似文献   

13.
Herein, we demonstrate that a very familiar, yet underutilized, physical parameter—gas pressure—can serve as signal readout for highly sensitive bioanalysis. Integration of a catalyzed gas‐generation reaction with a molecular recognition component leads to significant pressure changes, which can be measured with high sensitivity using a low‐cost and portable pressure meter. This new signaling strategy opens up a new way for simple, portable, yet highly sensitive biomedical analysis in a variety of settings.  相似文献   

14.
A new method for deriving the initiation rate constant for a slowinitiated living polymerization process in which all reactions are first order with respect to all participants is presented. The method is based upon an approximate analytical solution of the set of differential equations modeling this class of processes. The solution is found by asymptotic expansion of the unknown functions, using a dimensionless parameter which characterizes the process.  相似文献   

15.
《Chemical physics》1986,104(2):229-250
A general purpose MC SCF program with a direct, fully second-order and step-restricted algorithm is presented. The direct character refers to the solution of an MC SCF eigenvalue equation by means of successive linear transformations where the norm-extended hessian matrix is multiplied onto a trial vector without explicitly constructing the hessian. This allows for applications to large wavefunctions. In the iterative solution of the eigenvalue equation a norm-extended optimization algorithm is utilized in which the number of negative eigenvalues of the hessian is monitored. The step control is based on the trust region concept and is accomplished by means of a simple modification of the Davidson—Liu simultaneous expansion method for iterative calculation of an eigenvector. Convergence to the lowest state of a symmetry is thereby guaranteed, and test calculations also show reliable convergence for excited states. We outline the theory and describe in detail an efficient implementation, illustrated with sample calculations.  相似文献   

16.
Joulia, X., Maggiochi, P., Koehret, B., Paradowski, H. and Bartuel, J.J., 1986. Hybrid method for phase equilibrium flash calculations. Fluid Phase Equilibria, 26: 15–36.A new algorithm for the calculation of a two-phase equilibrium at a given temperature and pressure using various thermodynamic models is described. This algorithm is a combination of two simultaneous solution methods based on a linearization of the system of equations with or without the partial derivatives of equilibrium ratios with respect to composition. This hybrid method exploits the reliability of the first order methods, which make good progress from a poor starting point, and, if necessary, switches on special application of the Schubert method to accelerate the rate of convergence. Results are reported for liquid—liquid and liquid—vapour equilibria with special attention in the vicinity of critical points.  相似文献   

17.
A multivariate data modelling problem consists of a number of nodes with associated function values. Increase in multivariance urges us to use divide-and-conquer algorithms in modelling process of these problems. High dimensional model representation based methods can partition a given multivariate data set into less-variate data sets and have the ability of building a model through these partitioned data sets. Generalized HDMR (GHDMR) is one of these methods and it is known that it works well for dominantly and purely additive natures. Piecewise Generalized HDMR is an alternative method and was developed to increase the efficiency of GHDMR but the performance of the method for modelling multiplicative natures is still not sufficient and acceptable. This work aims to develop a new piecewise method based on enhanced multivariance product representation which works well for representing multiplicative natures.  相似文献   

18.
This work aims to develop a new High Dimensional Model Representation (HDMR) based method which can construct an analytical structure for a given multivariate data modelling problem. Modelling multivariate data through a divide-and-conquer method stands for multivariate data partitioning process in which we deal with a number of less variate data sets instead of a single N dimensional problem. Generalized HDMR is one of these methods used to model a multivariate data set which has a number of scattered nodes with associated function values. However, Generalized HDMR includes a linear equation system with huge number of unknowns and equations to be solved. This equation sometimes has linearly dependent equations in it and this is an undesirable situation. This work offers a new method named Piecewise Generalized HDMR method which bypasses this disadvantage as well as reducing the mathematical complexity and CPU time needed to complete the algorithm of the previous method. Our new method splits the given problem domain into subdomains, applies the Generalized HDMR philosophy to each subdomain and superpositions the information coming from these subdomains. The algorithm of this new method and a number of numerical implementations are given in this paper.  相似文献   

19.
The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression (MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear parameters, and the linear parameters are calculated from MLR. GA-MLR is an intuitive optimization approach and it exploits all advantages of the genetic algorithm technique. This optimization method results from an appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only one strictly mathematical "tool" involved in GA-MLR. The GA-MLR approach simplifies and accelerates considerably the optimization process because the linear parameters are not the fitted ones. Its properties are exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fréchet derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the GA method with the NR method, in which the minimum-value condition for the quadratic approximation to chi(2), obtained from the Taylor series expansion of chi(2), is recovered by means of the Newton-Raphson algorithm. The application of the GA-NR optimizer to model functions which are multi-linear combinations of nonlinear functions, is indicated. The VP algorithm does not distinguish the weakly nonlinear parameters from the nonlinear ones and it does not apply to the model functions which are multi-linear combinations of nonlinear functions.  相似文献   

20.
An efficient procedure to compute Hamiltonian matrix elements and reduced one- and two-particle density matrices for electronic wave functions using a new graphical-based nonlinear expansion form is presented. This method is based on spin eigenfunctions using the graphical unitary group approach (GUGA), and the wave function is expanded in a basis of product functions (each of which is equivalent to some linear combination of all of the configuration state functions), allowing application to closed- and open-shell systems and to ground and excited electronic states. In general, the effort required to construct an individual Hamiltonian matrix element between two product basis functions H(MN) = M|H|N scales as theta (beta n4) for a wave function expanded in n molecular orbitals. The prefactor beta itself scales between N0 and N2, for N electrons, depending on the complexity of the underlying Shavitt graph. Timings with our initial implementation of this method are very promising. Wave function expansions that are orders of magnitude larger than can be treated with traditional CI methods require only modest effort with our new method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号