首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来,光电化学分解水制氢(PEC)技术为未来的能源需求提供了一个清洁、可再生的途径.赤铁矿(α-Fe_2O_3)因其带隙小(~2.1 eV)、无毒、存储量大以及光电化学稳定等优点而受到广泛关注.然而,导电性差、空穴扩散长度短(2~4 nm)、表面水氧化动力学缓慢、激发态寿命短(10×10~(-12) sec)等缺点,极大地限制了Fe_2O_3光阳极的光转换效率.我们回顾了赤铁矿光阳极用于PEC水氧化的研究进展,主要集中在促进Fe_2O_3光阳极表面的水氧化反应,体相的电荷分离和迁移以及提高光吸收能力.最后,对Fe_2O_3光阳极面临的挑战和未来的发展进行了展望.  相似文献   

2.
染料敏化光电化学电池(DSPECs)是构建人工光合作用体系的潜在方式,其优势在于可通过优化染料结构来拓展可见光吸收范围,从根本上提高太阳能利用效率.染料敏化光阳极在受激发产生电荷分离之后,激发电子注入TiO2半导体导带,由于其导带位置比传统的可见光半导体,如BiVO4和Fe3O4等相比较负,因此理论上可以在较小的偏压下...  相似文献   

3.
李银银  武倩楠  步琦璟  张凯  林艳红  王德军  邹晓新  谢腾峰 《催化学报》2021,42(5):762-771,中插5-中插6
近年来以Z型机制为转移的光催化体系成微光电化学分解水领域的研究热点.相比较传统的异质结,Z型异质结能够保留具有高氧化能力与高还原能力的位点,从而提高光电化学效率.其中,证明电荷的Z型迁移机制成为研究人员努力的方向,比较有效的证明方法包括自由基捕获、XPS分析和检测还原位点等.对于Z型异质结,界面电场处电荷的迁移行为是至...  相似文献   

4.
构建异质结是改善半导体光响应和载流子传输的有效途径之一。采取电喷雾沉积法,在掺氟的二氧化锡玻璃(FTO)上先后制备了WO_(3)和Fe_(2)TiO_(5)纳米结构薄膜,并研究了其作为光阳极的光电催化性能。薄膜表面复杂的微纳米结构有效地增加了对光的捕获能力和化学反应比表面积;二者在界面处形成的异质结有效地抑制了光生载流子的复合,加速了电荷的转移,提升了光电催化水裂解性能。在1.23 V和1.6 V(vs. RHE)处,其光电流密度相比纯Fe_(2)TiO_(5)电极分别提升了1.4和4.6倍。  相似文献   

5.
光生电子-空穴对的复合被认为是限制BiVO4材料光电催化转换效率的重要原因之一。基于此,通过简单的水热-煅烧方法构筑了BiVO4/ZnFe2O4同型异质结光阳极,BiVO4/ZnFe2O4复合光阳极在1.23 V(vs RHE)下的光电流密度为3.33 mA·cm-2,较纯BiVO4提升了2倍(1.20 mA·cm-2)。相关的结构及性能测试表明,BiVO4和ZnFe2O4形成了带隙错开的n-n异质结,使得光生载流子得到有效分离,更有效地参与水氧化过程,进而提高了BiVO4的光电催化水分解性能。  相似文献   

6.
Photoelectrochemical water splitting is to utilize collected photo-generated carrier for direct water cleavage for hydrogen production. It is a system combining photoconversion and energy storage since converted solar energy is stored as high energy-density hydrogen gas. According to intrinsic properties and band bending situation of a photoelectrode, hydrogen tends to be released at photocathode while oxygen at photoanode. In a tandem photoelectrochemical chemical cell, current passing through one electrode must equals that through another and electrode with lower conversion rate will limit efficiency of the whole device. Therefore, it is also of research interest to look into the common strategies for enhancing the conversion rate at photoanode. Although up to 15% of solar-to-hydrogen efficiency can be estimated according to some semiconductor for solar assisted water splitting, practical conversion ability of state-of-the-art photoanode has yet to approach that theoretical limit. Five major steps happen in a full water splitting reaction at a semiconductor surface:light harvesting with electron excitations, separated electron-hole pairs transferring to two opposite ends due to band bending, electron/hole injection through semiconductor-electrolyte interface into water, recombination process and mass transfer of products/reactants. They are closely related to different proposed parameters for solar water splitting evaluation and this review will first help to give a fast glance at those evaluation parameters and then summarize on several major adopted strategies towards high-efficiency oxygen evolution at photoanode surface. Those strategies and thereby optimized evaluation parameter are shown, in order to disclose the importance of modifying different steps for a photoanode with enhanced output.  相似文献   

7.
光电化学电池(如染料敏化太阳能电池、量子点敏化太阳能电池以及光电化学水分解电池)是实现太阳能转化及存储的有效手段之一.其中,光电极是光电化学电池的核心组成部分,它集光吸收、光生电荷输运及转移等决定光转化效率的关键过程于一身,因此构筑高活性半导体光电极以实现高效太阳能转化利用引起研究者广泛关注.多孔TiO2纳米颗粒堆垛薄膜光阳极因具有大的比表面积,可提供更多的染料(量子点)担载和反应活性位点,在光电化学电池中表现出优异活性而被广泛研究.然而, TiO2纳米颗粒间大量存在的晶界对光生电荷有较强的散射作用,降低了光生电荷的收集效率.英国牛津大学Snaith研究小组利用模板辅助水热过程首次获得了(001)晶面占优的多孔单晶锐钛矿TiO2微米颗粒,这种多孔单晶TiO2微米颗粒在具有大比表面积的同时,其单晶结构还能有效去除晶界对电荷的散射作用,因而具有优异的电荷输运特性.利用这种多孔单晶TiO2微米颗粒组建的光阳极用于染料敏化太阳能电池中,展现出优异的太阳能光电转化性能.受该工作启发,各种形貌的多孔单晶TiO2微米颗粒作为光催化剂和光电化学分解水用光阳极材料被广泛研究,并表现出优异活性.在单晶微米颗粒堆垛成的薄膜光电极中,虽然单个单晶微米颗粒中晶界对电荷的散射作用被有效抑制,但是单晶颗粒间的晶界仍然存在并影响光生电荷的收集效率.为了彻底抑制晶界对光生电荷的散射作用,每个单晶颗粒都应该贯穿整个薄膜,例如一维TiO2纳米棒单晶阵列薄膜.虽然一维单晶阵列薄膜能够有效提高光生电荷的收集效率,但相对于多孔薄膜具有较小的比表面积,限制了担载染料(量子点)和反应位点的数量.为了增大TiO2单晶纳米棒阵列薄膜的比表面积,目前主要的手段包括调控纳米棒长径比、表面修饰TiO2纳米颗粒以及二次生长构建TiO2枝晶阵列.本文首次提出通过制备多孔单晶TiO2纳米棒单晶阵列薄膜来获得高比表面积和高光生电荷收集效率的光阳极,提高光电化学电池的效率.在透明导电薄膜(FTO)表面利用水热生长TiO2纳米棒阵列薄膜之前,预先在FTO基体上沉积一层SiO2球密堆模板, TiO2纳米棒单晶阵列在从FTO表面向上生长过程中,会将SiO2球模板包裹进TiO2纳米棒中,再通过碱溶液将SiO2球模板溶解,首次在FTO基体上原位生长出多孔单晶TiO2纳米棒阵列薄膜.将所得多孔单晶金红石TiO2纳米棒阵列薄膜作为光电化学分解水电池光阳极,其光电化学分解水活性相对于实心单晶金红石TiO2纳米棒阵列提高了2.6倍.多孔单晶金红石TiO2纳米棒阵列光阳极性能的提升可归因于:(1)多孔结构赋予多孔单晶金红石TiO2纳米棒阵列薄膜更大的比表面积,可提供更多的反应活性位点;(2)多孔结构能够有效缩短单晶金红石TiO2纳米棒中光生电荷体相输运距离,提高光生电荷的收集效率;(3)多孔结构通过对光多次反射吸收可有效增强光吸收,产生更多光生电荷参与水分解反应;(4)在制备过程中引入Si掺杂,导致多孔单晶金红石TiO2纳米棒带隙扩大了0.1 eV,带隙增大归因于导带位置负移0.1 eV,光生电子具有更强的还原能力,光电流起始电位相应负移约0.1 V.  相似文献   

8.
铈掺杂WO3的表征及其光解水催化性能的研究   总被引:3,自引:0,他引:3  
采用固相烧结法制备了掺杂不同量铈的WO3催化材料,并用XRD,XPS,DRS和PL光谱对样品进行了表征,主要考察了铈含量和焙烧温度对WO3的性质及光催化分解水制氧活性的影响,初步探讨了样品的PL光谱与其光催化分解水制氧活性的关系。结果表明,铈的掺杂可以使WO3的光谱响应范围向可见光区拓展。铈的掺杂没有引发新的荧光现象,适量铈的掺杂能够增强催化剂样品的荧光强度。在可见光辐射下进行光催化分解水制氧,于600 ℃处理的掺杂铈为0.05%(wt)的WO3催化剂的催化活性最高,此时催化剂的析氧速率比未掺杂WO3提高了1.5~1.7倍。研究表明,样品的光催化活性与其PL信号强度顺序一致,即PL信号越强,光催化活性越高。  相似文献   

9.
程翔  毕迎普 《分子催化》2020,34(4):341-365
光电催化水分解制氢是目前解决能源危机与环境污染最理想的技术之一.设计和构筑高效的光阳极是实现光电催化技术实际应用的关键.在众多半导体光阳极材料中,TiO_2纳米阵列由于其快的电荷传输速率,高的光热稳定性,无毒和成本低等优点,已经被广泛用于光电催化水分解反应的研究.但是TiO_2本征的光吸收范围窄、光生电荷复合率高、表面水氧化动力学缓慢严重地制约了其太阳能-氢能转换效率.我们结合近年来国内外及本课题组的研究工作详细论述了TiO_2纳米阵列的改性策略,主要包括利用元素掺杂来拓展TiO_2的光吸收范围并提高导电性,构筑异质结促进光电极电荷的分离与转移,半导体敏化增加光电极的可见光吸收并促进电荷转移,表面处理用于增加表面水氧化反应速率.最后指出了该材料发展现状,并对其发展前景做出展望.我们为进一步提高TiO_2纳米阵列的光电催化水分解活性提供了理论指导和实践借鉴.  相似文献   

10.
采用水热法和牺牲模板法相结合制备具有中空树枝结构的三氧化钨载体(d-WO3),在其表面进一步负载活性成分Pt,得到纳米Pt/d-WO3复合催化剂。采用X射线粉末衍射(XRD)、透射电镜(TEM)和比表面积和孔结构分析(BET)等对催化剂的形貌和结构进行了表征。结果表明,三氧化钨具有长6 μm和宽2 μm的中空树枝状结构,孔径分布主要集中在20~120 nm,比表面积为24 m2/g,平均粒径为7.2 nm的Pt纳米粒子均匀分布在其表面。采用循环伏安和计时电流法研究了Pt/d-WO3催化剂在酸性溶液中对甲醇的电催化氧化性能。结果表明,Pt/d-WO3催化剂比Pt/C和Pt/WO3催化剂对甲醇有更高的电催化氧化活性和稳定性。d-WO3所具有的中空介孔结构和双功能作用机理有利于甲醇在铂表面的直接脱氢氧化过程。  相似文献   

11.
近年来,基于BiVO4光阳极的光电催化分解水技术引起人们的关注.我们通过水热-氨化法制备出Ni3N纳米颗粒,首次将其作为助催化剂修饰到BiVO4光阳极上光电催化分解水.实验表明,Ni3N纳米颗粒成功负载到BiVO4光阳极表面并可有效抑制表面电荷复合以及提高光电催化分解水性能.在1.23 V v.RHE处光电流密度可达3...  相似文献   

12.
氢气具有无毒、能量密度高以及燃烧过程零污染等优点,被誉为是未来代替化石能源的优质新型能源载体.探索高效的、可持续的制氢技术对氢气能源发展至关重要.其中,光电化学水分解电池以太阳能作为驱动力将水分解成氢气和氧气,是解决能源和环境危机的理想途径之一.α-Fe2O3是一种窄带隙(~2.1 eV)半导体,可以吸收约40%的太阳光,同时具有天然丰度高、成本低等优点,是目前备受关注的光阳极材料.然而,由于α-Fe2O3空穴扩散距离短和表面产氧动力学慢等缺点,导致α-Fe2O3的光电分解水效率仍然较低.针对上述问题,目前主要通过掺杂、构建异质结和负载助催化剂等手段来改善其性能.其中,负载助催化剂可以有效降低水氧化活化能和促进表面电荷分离,是改善光阳极性能的有效手段.本文采用离子吸附和螯合剂调控水解两步法,将Ni(OH)2量子点(Ni(OH)2 QDs)原位生长于α-Fe2O3表面,成功构建了Ni(OH)2 QDs/α-Fe2O3复合光阳极.透射电子显微镜结果表明,Ni(OH)2以直径为3–5 nm的量子点附着于α-Fe2O3纳米棒表面,并形成独特且牢固的异质结结构.光电水氧化性能表明,所制备的Ni(OH)2 QDs/α-Fe2O3光电阳极表现出良好的光电性能,其光电流达到了1.93 mA·cm?2(1.23 V vs.RHE),是单纯α-Fe2O3的3.5倍,且Ni(OH)2 QDs助催化剂使α-Fe2O3的起始电位降低了~100 mV.2 h稳定性测试结果表明,Ni(OH)2 QDs助催化剂在提升α-Fe2O3光电水氧化性能的同时,自身能够保持良好的稳定性,这在Ni(OH)2作为光电水氧化助催化剂的研究中较为少见.通过电化学活性面积、开路电压、电化学阻抗谱、注入效率和强度调制光电流谱等表征了Ni(OH)2 QDs对α-Fe2O3光阳极和电解液界面电荷传输的影响.结果表明,Ni(OH)2 QDs不仅能充分暴露水氧化活性位点,促进载流子在界面快速迁移,而且能有效钝化α-Fe2O3表面态,从而降低光生电子-空穴表面复合几率.本文可为多功能和高效量子点助催化剂/半导体光阳极的构建及在光电分解水制氢方面的应用提供一定借鉴.  相似文献   

13.
采用一步滴涂法在掺氟二氧化锡(FTO)导电玻璃上制备了Bi1-xFexVO4(x=0, 0.05, 0.10, 0.25, 0.40)薄膜, 表征了其结构、 形貌、 光学以及光电化学方面的性质. 结果表明, 掺入Fe后Bi1-xFexVO4薄膜的光电流密度与 BiVO4薄膜相比均有所提高, 其中25% Fe-BiVO4薄膜表现出最优的光电化学性能. 在0.1 mol/L磷酸缓冲溶液(pH=7.0)中, 1.23 V(vs. RHE)电势下25% Fe-BiVO4薄膜的光电流密度为0.50 mA/cm2, 与BiVO4薄膜的0.15 mA/cm2相比提高了3倍多. 结合X射线衍射(XRD)、 拉曼光谱(Raman)和X射线光电子能谱(XPS)表征结果证实Fe3+以FeVO4的形式存在于Bi1-xFexVO4薄膜中, 形成了BiVO4/FeVO4复合物薄膜. 紫外-可见光谱(UV-Vis)结果显示, 所有Bi1-xFexVO4薄膜的禁带宽度均为2.4~2.5 eV. 25% Fe-BiVO4薄膜光电化学性能的提升主要归因于光生载流子转移效率(ηtrans)和分离效率(ηsep)的提高. 能级结构图表明, BiVO4和FeVO4之间可以形成Type Ⅱ型能级结构排列, 可以促进光生载流子的分离与转移, 是25% Fe-BiVO4薄膜光电化学性能提升的内在机理.  相似文献   

14.
采用连续离子层吸附法(SILAR)沉积CdS制备type-Ⅱ异质结TiO2/CdS光阳极,用光电化学沉积法在TiO2/CdS表面沉积催化剂(Co-Pi)得到TiO2/CdS/Co-Pi水氧化光阳极。通过X射线衍射(XRD)仪、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)仪等对样品结构及组成进行分析,证明CdS与Co-Pi已成功负载在TiO2表面。用已制备的光阳极在中性溶液中模拟水氧化测试,在较低外偏压(0 V(vs Ag/AgCl))和无电子牺牲剂的情况下,即使在可见光照射下,依然得到较高的初始光电流和稳定光电流,分别为1.3和0.5 mA·cm-2,表明制备的光阳极可以在可见光照下有效地驱动水氧化反应。光电化学池的工作原理为,CdS吸收光子产生光生电子-空穴,TiO2和Co-Pi分别传输电子和空穴,空穴进行水氧化,电子转移到阴极完成质子还原。  相似文献   

15.
太阳能驱动的光电化学(PEC)水分解可以有效地将太阳能转化为化学能,作为解决环境排放和能源危机最具前景的途径之一,已经引起了科学界的广泛关注.PEC水分解系统由两个半反应组成:在光阳极上的析氧反应(OER)和光阴极上的析氢反应(HER).PEC系统的太阳能转化效率主要由光阳极/电解质界面的OER过程所决定,这是一个非常复杂且涉及质子偶联的多步四电子转移过程.钒酸铋(BiVO4)是应用于PEC水分解的典型且具有实际应用前景的光阳极材料之一.然而,由于不良的表面电荷转移、电荷在光阳极/电解质结面处的表面复合以及缓慢的OER动力学等因素,导致BiVO4的PEC性能受到严重限制.本文开发了一种新颖有效的解决方案,以低成本、高电导率和具有快速电荷转移能力的硫化钴装饰来提升BiVO4光阳极的PEC活性,X射线多晶衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征,研究结果表明CoS成功装饰于BiVO4表面.采用紫外-可见吸收光谱(UV-VisDRS)研究了BiVO4和复合光阳极CoS/BiVO4的光学性质,结果表明,与纯的BiVO4相比,CoS/BiVO4光阳极在可见光范围内光吸收能力有所增强.将制备的BiVO4和CoS/BiVO4光阳极应用于PEC分解水实验中,结果表明,相对于1.23 V可逆氢电极,在光照下,CoS/BiVO4光阳极的光电流密度显著提升,可高达3.2 m Acm-2,是纯BiVO4的2.5倍以上.与纯BiVO4相比,CoS/BiVO4光阳极的起始氧化电位显示出负向偏移0.2 V,表明析氧过电势得到有效减小.入射光子转换效率(IPCE)测试结果表明,CoS/BiVO4光阳极的入射光子转换效率在500 nm之前的可见光范围内得到明显提升,其中,CoS/BiVO4的IPCE值在380 nm处达到最大.此外,由于CoS的装饰作用,CoS/BiVO4光阳极的电荷注入效率和电荷分离效率均得到较大的提升,分别达到75.8%(相较于纯BiVO4光阳极的36.7%)和79.8%(相较于纯BiVO4光阳极的66.8%).电化学阻抗谱(EIS)测试结果表明,通过CoS的装饰,CoS/BiVO4光阳极的界面电荷转移电阻得到有效降低,证明其界面电荷转移动力学得到有效提升.光致发光光谱测试结果表明,CoS的装饰显著提高了BiVO4的光生电子-空穴对的分离效率,进一步证明BiVO4表面的CoS装饰在其PEC分解水中起着非常积极的作用.本文为通过表面修饰设计应用于PEC水分解的有效的光阳极提供了新思路.  相似文献   

16.
倪鑫  周扬  谭瑞琴  况永波 《化学进展》2020,32(10):1515-1534
由n型半导体光阳极和p型半导体光阴极组成的无偏压光电化学电池通过太阳能可以将水直接转化为高能量密度的氢气,为解决太阳能利用过程中存在的间歇性和储存问题提供了一种潜在的经济有效的解决途径。金属氧化物具有低成本和易制备等优势,相比于发展较成熟的n型光阳极金属氧化物材料,传统的p型光阴极金属氧化物材料由于金属离子易受到光电腐蚀的影响,光电极寿命的提升是个很大的挑战。作为新型的金属氧化物光阴极材料,铁酸盐具有合适的带隙、较好的光稳定性、较正的起始电位以及较低的制备成本,正在成为光电化学电池实际应用中的有力竞争者。本文阐述了光电化学水分解的基本原理与提升光电极性能的一般方法,总结了近年来颇受关注的代表性铁酸盐光阴极材料CuFeO2、CaFeO4与LaFeO3在制备方法、元素掺杂以及表面修饰等方面取得的重要进展,并对铁酸盐光阴极的未来发展趋势做了展望。  相似文献   

17.
刘志锋  鲁雪 《催化学报》2018,39(9):1527-1533
光电化学分解水制氢可以一并解决环境问题和能源危机,因而成为研究热点.由于TiO_2 禁带宽度较大,不能有效吸收太阳光中的可见光,使光电化学分解水制氢的应用受限.g-C_3N_4的禁带宽度约为2.7 e V,能有效吸收可见光,但g-C_3N_4薄膜制备研究较少.我们通过热聚缩合法直接在FTO导电玻璃上制备出g-C_3N_4薄膜,发现其光电化学分解水制氢稳定性不高,选择易制备的TiO_2 作为保护层可以提高g-C_3N_4的耐用性.此外,为提高g-C_3N_4光生电子空穴对的分离能力,依靠Co-Pi对光生空穴的捕获作用而将其覆盖在最外层.因此本文首次制备一种新型的g-C_3N_4/TiO_2 /Co-Pi光阳极用于光电化学分解水制氢,其中g-C_3N_4用作光吸收层,TiO_2 用作保护层,Co-Pi用作空穴捕获层.并在此基础上,通过扫描电子显微镜(SEM),X射线衍射(XRD),紫外可见光谱(UV-Vis)等手段研究了g-C_3N_4/TiO_2 /Co-Pi光阳极的形貌特征和光电化学性能.SEM、EDS和XRD结果表明,g-C_3N_4/TiO_2 /Co-Pi光阳极被成功制备在了FTO导电玻璃上,厚度约为3μm.UV-Vis测试表明,g-C_3N_4的光吸收边约为470 nm,可以有效地吸收可见光,并且g-C_3N_4的框架结构使光多次反射折射增加了光的捕获能力,由此可见,g-C_3N_4能够发挥很好的光吸收层作用.通过对g-C_3N_4光阳极,g-C_3N_4/TiO_2 光阳极和g-C_3N_4/TiO_2 /Co-Pi光阳极的电流电压测试发现,g-C_3N_4/TiO_2 光阳极的光电流密度小于g-C_3N_4光阳极,而g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密在可逆氢电极1.1 V下达到了0.346 mA?cm–2,约为单独g-C_3N_4光阳极的3.6倍.这说明Co-Pi是提升g-C_3N_4光电化学性能的主要因素.电化学阻抗测试结果发现,g-C_3N_4/TiO_2 /Co-Pi光阳极的界面电荷转移电阻小于g-C_3N_4光阳极的,这表明g-C_3N_4/TiO_2 /Co-Pi光阳极界面处载流子转移较快,同时也能促进内部光生电子空穴对的分离,整体性能的提高应该主要归因于Co-Pi对光生空穴的捕获作用.恒电压时间测试展示出g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密度在2 h测试过程中没有明显下降,表明g-C_3N_4/TiO_2 /Co-Pi光阳极是相当稳定的,具有良好的耐用性,归因于TiO_2 和Co-Pi的共同保护作用,主要归因于TiO_2 层对FTO导电玻璃上的g-C_3N_4薄膜保护,从电化学沉积Co-Pi到所有测试结束.总体而言,g-C_3N_4/TiO_2 /Co-Pi光阳极加强的光电化学性能归因于以下几个因素:(1)g-C_3N_4优异的光吸收能力;(2)TiO_2 稳定的保护提升了g-C_3N_4薄膜的耐用性;(3)Co–Pi对光生空穴的捕获有效促进了光生电子空穴对的分离.  相似文献   

18.
阳极氧化法制备光电化学防腐蚀二氧化钛薄膜   总被引:6,自引:0,他引:6  
应用阳极氧化法制备二氧化钛薄膜.研究了阳极氧化电压、电解质的性质、浓度对二氧化钛薄膜光电化学防腐蚀性能的影响,并测定该薄膜在模拟海水中的极化曲线以及与45#碳钢的耦合电流曲线.  相似文献   

19.
当分散在溶液中的TiO2、znO、CdS、WO3等多相体系受到光照时,固态的半导体物质吸收光子后会产生电子-空穴对,它们在半导体界面上与周围介质反应,可能以各种方式进行电荷转移而形成不同的活泼中间体,引起人们对发生在半导体粉末上的光化学过程的关注。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号