首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
The intrinsic features of (hetero‐arene)–metal interactions have been elusive mainly because the systematic structure analysis of non‐anchored hetero‐arene–metal complexes has been hampered by their labile nature. We report successful isolation and systematic structure analysis of a series of non‐anchored indole–palladium(II) complexes. It was revealed that there is a σ–π continuum for the indole–metal interaction, while it has been thought that the dominant coordination mode of indole to a metal center is the Wheland‐intermediate‐type σ‐mode in light of the seemingly strong electron‐donating ability of indole. Several factors which affect the σ‐ or π‐character of indole–metal interactions are discussed.  相似文献   

14.
15.
16.
A series of N ‐arylimide molecular balances were designed to study and measure fluorine–aromatic (F–π) interactions. Fluorine substituents gave rise to increasingly more stabilizing interactions with more electron‐deficient aromatic surfaces. The attractive F–π interaction is electrostatically driven and is stronger than other halogen–π interactions.  相似文献   

17.
18.
19.
Induced π acidity from polarizability is emerging as the most effective way to stabilize anionic transition states on aromatic π surfaces, that is, anion–π catalysis. To access extreme polarizability, we propose a shift from homogeneous toward heterogeneous anion–π catalysis on higher carbon allotropes. According to benchmark enolate addition chemistry, multi‐walled carbon nanotubes equipped with tertiary amine bases outperform single‐walled carbon nanotubes. This is consistent with the polarizability of the former not only along but also between the tubes. Inactivation by π‐basic aromatics and saturation with increasing catalyst concentration support that catalysis occurs on the π surface of the tubes. Increasing rate and selectivity of existing anion–π catalysts on the surface of unmodified nanotubes is consistent with transition‐state stabilization by electron sharing into the tubes, i.e., induced anion–π interactions. On pristine tubes, anion–π catalysis is realized by non‐covalent interfacing with π‐basic pyrenes.  相似文献   

20.
Herein, we address the question whether anion–π and cation–π interactions can take place simultaneously on the same aromatic surface. Covalently positioned carboxylate–guanidinium pairs on the surface of 4‐amino‐1,8‐naphthalimides are used as an example to explore push–pull chromophores as privileged platforms for such “ion pair–π” interactions. In antiparallel orientation with respect to the push–pull dipole, a bathochromic effect is observed. A red shift of 41 nm found in the least polar solvent is in good agreement with the 70 nm expected from theoretical calculations of ground and excited states. Decreasing shifts with solvent polarity, protonation, aggregation, and parallel carboxylate–guanidinium pairs imply that the intramolecular Stark effect from antiparallel ion pair–π interactions exceeds solvatochromic effects by far. Theoretical studies indicate that carboxylate–guanidinium pairs can also interact with the surfaces of π‐acidic naphthalenediimides and π‐basic pyrenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号