共查询到20条相似文献,搜索用时 15 毫秒
1.
Bi2WO6作为一种新型半导体光催化剂,具有较窄的带隙宽度和特殊的层状结构,因而显示出良好的可见光催化性能。本文综述了围绕提高Bi2WO6的光催化活性和实用性而开展的相关研究成果,包括:纳米结构Bi2WO6材料;分级超结构Bi2WO6材料;Bi2WO6光催化剂的系列修饰改性,如金属氧化物复合、碳烯和金属单质的表面沉积,以及金属离子和非金属离子的掺杂等。此外,还从回收角度综述了Bi2WO6的固定化技术。最后对Bi2WO6光催化剂的发展趋势进行了展望,强调对Bi2WO6进行带隙调控,并加强对其异质结构界面状态的研究,通过理论计算可深入理解光催化机制,以从制备入手指导现有催化剂的改良和设计新型光催化剂。 相似文献
2.
3.
可见光响应Bi2WO6薄膜的制备与光电化学性能 总被引:2,自引:0,他引:2
采用非晶态配合物-提拉法在ITO导电玻璃基底上制备得到Bi2WO6薄膜. 采用FE-SEM、XRD、Raman、DRS、光电流响应谱、IPCE等手段, 研究了Bi2WO6薄膜的形貌、结构、光电性能以及薄膜结构与光电性能的关系. 结果表明, 450 ℃以上煅烧可以得到Bi2WO6结晶薄膜, 薄膜由沿(131)晶面趋向生长的Bi2WO6纳米颗粒组成, 颗粒的粒度随煅烧温度的升高而增大, 同时颗粒之间的间距也相应增大. ITO/Bi2WO6薄膜电极在可见光(λ>400 nm)照射下可以产生光电流, 光电流强度与光强度线性相关; 光电流强度和光电转换量子效率受Bi2WO6薄膜结构的影响, 通过控制薄膜的煅烧温度等制备条件, 可以提高薄膜光电极的光电转换量子效率. 相似文献
4.
还原氧化石墨烯修饰Bi2WO6提高其在可见光下的光催化性能 总被引:3,自引:0,他引:3
通过两步水热法合成了一种新型的还原氧化石墨烯(RGO)修饰的Bi2WO6(Bi2WO6-RGO), 结果表明其在可见光下的光催化性能得到了显著的提高. 研究了RGO在Bi2WO6-RGO中的含量对其光催化性能的影响, 从而确定出RGO相对于Bi2WO6的最佳掺杂质量比值为1%. 通过扫描电镜(SEM)研究发现, RGO并没有改变Bi2WO6光催化剂的结构和形貌. Bi2WO6-RGO在可见光下的光催化性能得以提高可以归功于RGO. 其可能的机理是石墨烯的存在有利于光生载流子(激子)的分离, 从而导致产生更多的O2·-用于有机染料污染物(如罗丹明B (RhB))的降解. RhB分子在石墨烯上的有效吸附可能也是导致Bi2WO6-RGO光催化性能提高的另一原因. 相似文献
5.
7.
《催化学报》2019,(5)
作为大气中的典型污染物之一,化石燃料燃烧产生的NO不仅会引起酸雨,还会影响人体呼吸系统.半导体光催化技术可以利用太阳能和空气中的氧气来分解环境污染物,因而得到了国内外学者的广泛关注.作为最具代表性的半导体光催化材料,TiO_2虽然具有较强的氧化能力和优异的生物相容性,但是其禁带宽度较大(3.2 eV)而只能被紫外光激发,无法充分利用太阳能.因此,开发新型可见光响应的半导体催化材料具有重要意义.Bi_2WO_6是一种独特的具有层状结构半导体光催化材料,因其具有可见光响应性能而受到了广泛关注;但是可见光响应范围窄(禁带宽度2.6?2.8 eV)以及其较快的光生载流子复合,导致Bi_2WO_6其光催化效率不高,迫切需要采取有效措施对Bi_2WO_6进行改性.贵金属(诸如金和银)纳米粒子可见光区的表面等离子体效应(SPR),可以用来增强半导体材料的可见光催化性能.但是,贵金属的价格昂贵,难以满足实际需求.近来的研究发现,非贵金属Bi同样具有类似的表面等离子体效应.因此,本文选用以乙二醇为还原剂,通过低温还原Bi(NO_3)_3的方式,在花球Bi_2WO_6表面,成功制备了沉积了Bi纳米球复合光催化次材料.本文用NO的可见光催化氧化来评价Bi/Bi_2WO_6复合材料的光催化性能的可见光催化性能,所使用的光源为可见光LED灯(λ400 nm).结果发现:(1)单一组分的Bi金属和Bi_2WO_6前驱体花球均表现出非常差的光催化活性,NO去除率分别仅为7.7%和8.6%;(2)随着Bi纳米球的负载量从0增加至10 wt%,复合材料Bi/Bi_2WO_6的NO去除效率从12.3%稳定增加至53.1%至20 wt%时开始降低.这可能是由于Bi纳米球阻碍了Bi_2WO_6对光的吸收;(3)改性后的Bi/Bi_2WO_6具有良好的可见光催化稳定性,循环使用在五次后其活性变化不大.光催化机理研究结果显示,Bi/Bi_2WO_6增强的可见光NO去除性能归因于Bi纳米球的SPR效应.在可见光照射下,Bi纳米球的SPR效应产生的电场可以显著促进Bi_2WO_6的光生载流子分离效率.同时,Bi纳米球可以快速转移Bi_2WO_6导带上的光生电子,生成超氧游离基(·O_2~?),从而抑制了光生电子和空穴的复合.Bi_2WO_6表面的空穴可以被表面吸附水捕获,产生羟基自由基(·OH).在活性氧物种·OH和·O_2~?的不断进攻作用下,NO最终被氧化.本文为宽禁带半导体的非贵金属敏化,提升其可见光催化性能解决环境问题提供了新思路. 相似文献
8.
社会经济快速发展的同时, 也带来了日益严峻的环境污染问题. 半导体光催化氧化技术因节能环保而在环境领域有广阔的应用前景. 作为最具有代表性的半导体光催化材料, TiO2因为其禁带宽度(3.2 eV)比较大, 只能被紫外光激发, 因而对太阳能的利用率较低. 作为一种最简单的含铋层状氧化物, Bi2WO6的禁带宽度(2.7 eV)相对较小, 可以部分利用太阳光中的可见光, 因而受到广大研究者的青睐. 但是, Bi2WO6光催化材料的可见光响应范围较窄, 仅能被波长小于450 nm的光激发, 且激发后的光生载流子容易复合, 导致光催化效率不高. 因此, 迫切需要对Bi2WO6光催化材料进行结构修饰与改性,采用拓展其光响应范围和抑制载流子复合, 来提高其光催化活性.本文采用离子交换法原位合成了具有核-壳结构的Bi2S3@Bi2WO6纳米片, 充分利用Bi2S3优良的可见光响应性能和半导体异质结光催化剂的构建, 来提高Bi2WO6的光催化活性. 结果表明, 随着Na2S·9H2O用量从0增加到1.5 g, 所得催化剂的光活性不断提高, X3B的降解速率常数由0.40×10-3min-1增加到6.6×10-3min-1, 催化剂活性提高了16.5倍. 当进一步增加Na2S·9H2O的用量时(1.5-3.0 g), 复合催化剂的光活性下降. 这是由于过多Na2S·9H2O的引入导致在催化剂表面生成了没有光活性的NaBiS2层(Bi2S3+ Na2S = 2NaBiS2), 占据了催化剂的活性位点, 阻碍了染料分子与催化剂的直接接触. Bi2WO6@Bi2S3异质结纳米片光活性的提高, 可归因于Bi2S3的敏化作用极大拓展了复合催化剂的光响应范围; 另一方面, Bi2WO6和Bi2S3两者之间的半导体异质结效应有效促进了光生载流子在空间的有效分离, 抑制了光生电子-空穴的复合, 从而提高了复合催化剂的催化效率. 本研究为其他半导体复合材料的原位生长制备提供了新的思路. 相似文献
9.
采用共沉淀法制备了不同Ti/Bi摩尔比的TiO_2/Bi_2WO_6纳米异质结可见光光催化剂.采用XRD、HR-TEM、XPS及UV-vis DRS测试技术对样品的晶相结构、微观形貌、组成及吸光性能等进行了表征分析.以MB模拟环境污染物,考察了TiO_2/Bi_2WO_6纳米异质结的可见光光催化活性.结果表明,当热处理温度为700℃,n(Ti)∶n(Bi)的比值为1∶5.4,可见光照射180 min时,TiO_2/Bi_2WO_6纳米异质结对MB的降解率达80.0%,是纯Bi_2WO_6的12倍.光催化活性的提高可归因于TiO_2与Bi_2WO_6复合后可以产生能带交叠效应,从而促进光生电子-空穴对的有效分离. 相似文献
10.
11.
采用一步水热法成功制备鳞状形貌的BiOBr/Bi2WO6复合物,通过X射线衍射(XRD)仪、扫描电子显微镜(SEM)、N2吸附/解吸附比表面测定仪(BET)、傅里叶变换红外(FT-IR)光谱等对复合物进行了表征。对比Bi2WO6与BiOBr的SEM照片,结合KBr的浓度实验,提出了BiOBr/Bi2WO6的鳞状形貌的形成机理。选取有机染料为吸附质,BiOBr/Bi2WO6为吸附剂进行了复合物吸附性能测试。结果表明,BiOBr/Bi2WO6对阳离子染料表现出优越的吸附性能,10 min对次甲基蓝(MB)的吸附率高达99%,优于常规的活性炭吸附剂。此外,BiOBr/Bi2WO6对有机染料的吸附行为符合准二级反应速率方程和Freundlich等温吸附模型。 相似文献
12.
增强光催化活性的3D分级结构Bi2W06微球及表面酸性 总被引:1,自引:0,他引:1
以KNO3为矿化剂,用水热法制备了3D分级结构Bi2WO6微球,通过XRD、SEM、BET对产物进行了表征.探讨了3D分级结构Bi2WO6微球可能的形成机理.以罗丹明B为模型污染物,研究了合成产物的光催化性质.结果表明:在紫外光下,RhB的降解以共轭结构断裂的光催化反应为主;而在可见光照射下,RhB的降解可能是光催化和光敏化共同作用的结果.进一步以吡啶为探针分子,通过吸附吡啶红外光谱探讨了Bi2W06表面酸性与光催化降解RhB之间的关系.研究显示,Bi2W06具有较强的表面酸性,增强了Bi2WO6与RhB分子之间吸附作用,有利于染料分子上的电子跃迁至催化剂上,易于发生光敏化和光催化反应。 相似文献
13.
氮氧化物(简称NOx,包括NO和NO2等)是形成二次有机气溶胶的重要前体物,其存在会严重影响空气质量并危害人类健康.目前用于NOx的去除的方法主要有过滤、物理吸附、热催化等.然而,这些技术存在高能耗及产生二次污染等缺点,严重制约其实际应用.近年来,光催化技术作为一种有效处理NOx的环保技术,因其具备在常温下高效处理低浓度NOx(大气污染浓度水平)的优点而获得广泛关注.最近,Bi2WO6光催化剂因其独特的层状结构以及特有的催化性质,表现出良好的可见光催化性能.Bi2WO6光催化性能与催化剂的形貌及尺寸大小密切相关,目前报道的Bi2WO6的形貌有片状、颗粒状、花状、中空微球等.其中,由小纳米颗粒堆积成的中空Bi2WO6微球因其大的比表面积和高的荷质传输速率,表现出显著优于其它形貌的光催化性能.目前已有少量关于中空结构Bi2WO6微球的制备方法的报道,这些方法均需引入纳米球状的"核"作为模板,并在其上生长Bi2WO6胶体颗粒,然后去除"核",从而得到中空结构.譬如,Shang等采用碳纳米球作为"核"制备出Bi2WO6微球,再通过煅烧手段去除碳"核".Thillai与合作者用硅球作为"核",为了得到中空结构Bi2WO6微球,用NaOH将硅"核"刻蚀.然而这类方法均涉及到复杂的制备过程和高昂的运行成本.超生喷雾热分解法是一种常见的制备尺寸可控的纳米球的方法.在之前的工作中,本研究组成功使用超声喷雾热解法制备出具有优良光催化活性的Bi2WO6实心微球.我们首次加入NaCl盐为模板,使用简单的超声喷雾热分解方法制备出具有中空结构的Bi2WO6微球光催化剂,合成过程无需采用复杂的除"核"手段.一系列表征表明:该微球由直径为41?148 nm的纳米片自组装而成,并在表面形成了不均匀分布的孔结构;并对Bi2WO6中空微球的生长机制做了详细的研究,考察了所制备Bi2WO6催化剂去除NO的效率.生长机制研究结果表明,NaCl盐在中空Bi2WO6微球的形成过程中发挥着关键性作用:(1)NaCl盐溶液在超生喷雾热分解法的高温过程中形成NaCl单晶并作为"核"模板,参与中空Bi2WO6微球的形成;(2)Na+离子有助于Bi2WO6微球的微结构-纳米片的生长;(3)Cl?离子有利于Bi2WO6微球表面微孔的形成;(4)NaCl模板水洗后留下中空结构的Bi2WO6微球;(5)NaCl盐也充当着多孔诱发剂,其水洗溢出过程会造成Bi2WO6微球表面的孔结构.性能测试表明,以NaCl盐为模板所制备的中空Bi2WO6微球表现出优异的光催化性能,其在模拟太阳光下去除NO的效率是未添加模板的1.7倍、以KCl为模板的1.5倍、以Na2SO4为模板的1.2倍.BET和DRS分析表明,中空结构Bi2WO6微球具有大的比表面积和高的可见光吸收,对提高催化性能起到重要作用.ESR测试结果表明,?OH和?O2?是中空Bi2WO6微球的光催化反应过程的主要活性物种,?O2?的产生有助于提高光催化剂降解NO的耐受性. 相似文献
14.
以KNO3为矿化剂,用水热法制备了3D分级结构Bi2WO6微球,通过XRD、SEM、BET对产物进行了表征.探讨了3D分级结构Bi2WO6微球可能的形成机理.以罗丹明B为模型污染物,研究了合成产物的光催化性质.结果表明:在紫外光下,RhB的降解以共轭结构断裂的光催化反应为主;而在可见光照射下,RhB的降解可能是光催化和光敏化共同作用的结果.进一步以吡啶为探针分子,通过吸附吡啶红外光谱探讨了Bi2WO6表面酸性与光催化降解RhB之间的关系.研究显示,Bi2WO6具有较强的表面酸性,增强了Bi2WO6与RhB分子之间吸附作用,有利于染料分子上的电子跃迁至催化剂上,易于发生光敏化和光催化反应. 相似文献
15.
16.
利用表面活性剂十六烷基三甲基溴化铵(CTAB)、十二烷基苯磺酸钠(SDBS)作为结构导向剂,在水热条件下合成了由纳米片组装而成的Bi2WO6花状多孔微球的新颖结构。探讨了反应时间、表面活性剂种类等因素对产物形貌、结构和性能的影响。在氙灯照射下,发现使用CTAB所得到的Bi2WO6比添加SDBS所得到的样品具有更高的催化罗丹明B降解的活性,原因是前者具有较大的比表面积和吸收阈值。同时提出了晶体可能的生长机理为各向异性生长特性和自组装-Ostwald熟化过程的结合。 相似文献
17.
随着工业化社会的不断发展,环境问题日益严重。尤其是工业废水问题一直是催化降解领域的研究热点。光催化与高级氧化工艺(AOPs)耦合技术因为具有高效、无选择性、处理条件温和等特点,被认为是一种高效的有机污染物降解技术。本文以十六烷基三甲基溴化铵(CTAB)表面活性剂作为模板,采用简单的水热法制备了钨酸铋(Bi2WO6)纳米花。通过X射线衍射(XRD)、傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和紫外-可见漫反射光谱(DRS)技术对其微观形貌、晶相、表面化学元素状态和光学性质进行了表征。为了研究钨酸铋(Bi2WO6)纳米花的催化性能,在不同催化体系下降解有机污染物罗丹明B (Rh B),实验发现,于vis/过硫酸盐(PMS)/Bi2WO6体系下,40 min内对Rh B的去除率高达96.39%,明显优于PMS/Bi2WO6 (40 min内去除率为38.7... 相似文献
18.
19.
Bi OI具有独特的层状结构及较窄的带隙,是具有可见光响应的光催化剂.然而,高光生载流子复合率抑制了其光催化活性.大量研究表明,氧缺陷不但是催化剂表面最具活性的位点,而且可以通过减小禁带宽度扩大光响应范围.与此同时,氧缺陷也可以作为光致电荷陷阱,抑制电子-空穴复合,并作为电荷转移到吸附物种的吸附位点.金属的表面等离子体共振(SPR)效应为半导体材料更高效的光吸收和利用提供了一条崭新的途径,从而可以获得更好的太阳光转换和光催化效率.然而, SPR效应和由氧缺陷引起的多个中间能级协同作用还未被探究.本文研究了利用金属铋的SPR效应和引入缺陷共同提高BiOI的光催化性能.通过部分还原BiOI制备出具有较高可见光催化去除氮氧化物活性的Bi@缺陷型BiOI,研究了还原剂用量对Bi@缺陷型Bi OI光催化性能的影响.发现用2 mmol还原剂Na BH4制备的光催化剂(Bi/BiOI-2)具有最高效的可见光催化活性.XRD、XPS、SEM和TEM表征表明Bi单质沉积在Bi OI表面,整个体系由纳米片自组装为海绵状立体结构.BET比表面积增大,结合SEM推测是由纳米片的分层堆叠造成的.UV-DRS表明带隙宽度仅有1.8 eV的Bi OI具有可见光响应.EPR和态密度(DOS)结合可以证明氧缺陷及其激发多个中间能级的存在.中间能级可以促进电子在可见光下从价带到导带的转移.PL表明体系中Bi金属的SPR效应所激发的电磁场可以促进光生载流子的分离.通过DFT理论计算催化剂的电子结构,差分、电子局域函数(ELF)及电势表明Bi单质和Bi-O层间强的共价作用形成一个通道,使得热电子从较高电势的Bi单质向相对低电势的Bi OI传递, Bi单质PDOS的计算证明价带变宽归因于Bi元素轨道的贡献, Bi的SPR效应激发Bi OI的电子到更高能级并聚集在价带顶,这有利于光生载流子的分离.ESR表明提升的电荷分离和迁移率促进了羟基和超氧自由基的产生.结合表征及理论计算结果,活性的增强可归因于金属Bi和氧空位的协同效应.氧缺陷激发的中间能级促进了电荷转移, Bi金属的SPR效应使可见光吸收效率提高并且促进了光生载流子分离,这些是增强光催化性能的关键因素.此外,采用原位红外光谱法(FT-IR)对Bi/BiOI-2的NO吸附和反应过程进行了动态监测.根据中间产物分析和DFT计算结果,提出了金属Bi和氧空位协同作用提高Bi/BiOI光催化性能的机理.本研究为高性能光催化剂的设计和理解空气净化光催化反应机理提供了新的思路. 相似文献