共查询到20条相似文献,搜索用时 15 毫秒
1.
Brandon J. O'Neill David H. K. Jackson Dr. Anthony J. Crisci Carrie A. Farberow Fengyuan Shi Dr. Ana C. Alba‐Rubio Dr. Junling Lu Dr. Paul J. Dietrich Dr. Xiangkui Gu Dr. Christopher L. Marshall Prof. Peter C. Stair Dr. Jeffrey W. Elam Dr. Jeffrey T. Miller Prof. Fabio H. Ribeiro Prof. Paul M. Voyles Prof. Jeffrey Greeley Prof. Manos Mavrikakis Prof. Susannah L. Scott Prof. Thomas F. Kuech Prof. James A. Dumesic 《Angewandte Chemie (International ed. in English)》2013,52(51):13824-13824
2.
Brandon J. O'Neill David H. K. Jackson Dr. Anthony J. Crisci Carrie A. Farberow Fengyuan Shi Dr. Ana C. Alba‐Rubio Dr. Junling Lu Dr. Paul J. Dietrich Dr. Xiangkui Gu Dr. Christopher L. Marshall Prof. Peter C. Stair Dr. Jeffrey W. Elam Dr. Jeffrey T. Miller Prof. Fabio H. Ribeiro Prof. Paul M. Voyles Prof. Jeffrey Greeley Prof. Manos Mavrikakis Prof. Susannah L. Scott Prof. Thomas F. Kuech Prof. James A. Dumesic 《Angewandte Chemie (International ed. in English)》2013,52(51):13808-13812
Atomic layer deposition (ALD) of an alumina overcoat can stabilize a base metal catalyst (e.g., copper) for liquid‐phase catalytic reactions (e.g., hydrogenation of biomass‐derived furfural in alcoholic solvents or water), thereby eliminating the deactivation of conventional catalysts by sintering and leaching. This method of catalyst stabilization alleviates the need to employ precious metals (e.g., platinum) in liquid‐phase catalytic processing. The alumina overcoat initially covers the catalyst surface completely. By using solid state NMR spectroscopy, X‐ray diffraction, and electron microscopy, it was shown that high temperature treatment opens porosity in the overcoat by forming crystallites of γ‐Al2O3. Infrared spectroscopic measurements and scanning tunneling microscopy studies of trimethylaluminum ALD on copper show that the remarkable stability imparted to the nanoparticles arises from selective armoring of under‐coordinated copper atoms on the nanoparticle surface. 相似文献
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.