首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bi9Rh2Br3, Bi9Rh2I3, and Bi9Ir2I3 – A New Structure Family of Quasi One‐dimensional Metals Bi9Rh2Br3, Bi9Rh2I3, and Bi9Ir2I3 were synthesized from the elements using niobium bromides or iodides as auxiliaries to modify the partial pressures in the course of the reaction. X‐ray diffraction on single crystals showed that the compounds are not isomorphous. However they have a common structural principle: strands of condensed [MBi8] polyhedra, which are separated by halide anions. The spatial arrangement of the [MBi1/1Bi7/2] strands differs with the combination of elements: In Bi9Rh2I3 (monoclinic, P21/m (no. 11), a = 775.6(1), b = 1374.9(2), c = 901.1(2) pm, β = 109.29(2)°) all strands are oriented parallel to each other. Bi9Rh2Br3 (monoclinic, P21/m (no. 11), a = 927.98(8), b = 1372.1(1), c = 1992.7(2) pm, β = 100.77(1)°) and Bi9Ir2I3 (orthorhombic, Pnma (no. 62), a = 2677.5(5), b = 1394.2(2), c = 967.6(1) pm) are ordered polytypes with two orientations changing in alternating layers of characteristic widths. The experimental proof of metallic conductivity in Bi9Ir2I3 supports the assumption of delocalised electrons inside the  [MBi1/1Bi7/2] strands. The magnetic susceptibility of Bi9Rh2Br3 increases slowly with decreasing temperature and shows a local maximum at about 14 K.  相似文献   

2.
Syntheses, Crystal Structures, and Triple Twinning of the Cluster Trimers Bi2[PtBi6Br12]3 and Bi2[PtBi6I12]3 Melting reactions of Bi with Pt and BiX3 (X = Br, I) yield shiny black, air insensitive crystals of the subhalides Bi2[PtBi6X12]. Bi2[PtBi6Br12]3 crystallizes in the monoclinic space group C2/m with lattice parameters a = 1617.6(2) pm, b = 1488.5(1) pm, c = 1752.4(2) pm, and β = 110.85(4)°. Bi2[PtBi6I12]3 adopts the triclinic space group with pseudo‐monoclinic lattice parameters a = 1711.2(2) pm, b = 1585.1(1) pm, c = 1865.7(2) pm, and α = 90°, β = 111.15(4)°, γ = 90°. The two homoeotypic compounds consist of cuboctahedral [Pt?IIBiII6X?I12]2? clusters that are concatenated into linear trimers by BiIII atoms. The ordered distribution of BiIII atoms destroys the inherent threefold rotation axes in the packing of cluster anions. As a consequence of the pseudosymmetry the crystals are triple twinned along [201]. Due to different orientations of the cluster trimers there are two BiII···X inter‐cluster bridges per BiII atom in Bi2[PtBi6Br12]3 but only one bridge in Bi2[PtBi6I12]3. The structure of the iodine compound can be deduced from the NaCl structure type, leaving 37 of 96 atomic positions unoccupied. The arrangement of the cuboctahedral clusters follows the motif of a body‐centered cubic packing.  相似文献   

3.
Single Crystal Investigations on LiMF6 (M = Rh, Ir), Li2RhF6, and K2IrF6 LiRhF6, LiIrF6, Li2RhF6, and K2IrF6 were obtained again, but for the first time investigated by single crystal X‐ray methods. Rubyred LiRhF6 and yellow LiIrF6 crystallize isostructural in the trigonal space group R3 – C23i (Nr. 148) with the lattice parameters LiRhF6: a = 502.018(7) pm, c = 1355.88(3) pm, Z = 3 and d(Rh–F) = 185.5(1) pm; LiIrF6: a = 506.148(4) pm, c = 1362.60(2) pm, Z = 3, d(Ir–F) = 187.5(3) pm (LiSbF6‐Typ). Yellow Li2RhF6 crystallizes tetragonal in the space group P42/mnm – D144h (Nr. 136) with a = 463.880(8) pm, c = 905.57(2) pm, Z = 2 and d(Rh–F) = 190.3(4)–191.4(3) pm (Trirutil‐Typ). Yellow K2IrF6 crystallizes trigonal in the space group P3m1 – D33d (Nr. 164) with a = 578.88(7) pm, c = 465.06(5) pm, Z = 1 and d(Ir–F) = 194.0(6) pm, isotypic with K2GeF6.  相似文献   

4.
Syntheses, Properties and Crystal Structures of the Cluster Salts Bi6[PtBi6Cl12] and Bi2/3[PtBi6Cl12] Melting reactions of Bi with Pt and BiCl3 yield shiny black, air insensitive crystals of the subchlorides Bi6[PtBi6Cl12] and Bi2/3[PtBi6Cl12]. Despite the substantial difference in the bismuth content the two compounds have almost the same pseudo‐cubic unit cell and follow the structural principle of a CsCl type cluster salt. Bi6[PtBi6Cl12] consists of cuboctahedral [PtBi6Cl12]2? clusters and Bi62+ polycations (a = 9.052(2) Å, α = 89.88(2)°, space group P 1, multiple twins). In the electron precise cluster anion, the Pt atom (18 electron count) centers an octahedron of Bi atoms whose edges are bridged by chlorine atoms. The Bi62+ cation, a nido cluster with 16 skeletal electrons, has the shape of a distorted octahedron with an opened edge. In Bi2/3[PtBi6Cl12] the anion charge is compensated by weakly coordinating Bi3+ cations which are distributed statistically over two crystallographic positions (a = 9.048(2) Å, α = 90.44(3)°, space group ). Bi6[PtBi6Cl12] is a semiconductor with a band gap of about 0.1 eV. The compound is diamagnetic at room temperature though a small paramagnetic contribution appears towards lower temperature.  相似文献   

5.
Cluster Complexes [M2Rh(μ‐PCy2)(μ‐CO)2(CO)8] with Triangular Core of RhM2 (M = Re, Mn; M2 = MnRe): Synthesis, Structure, Ring Opening Reaction, and Properties as Catalysts for Hydroformylation and Isomerisation of 1‐Hexene The salts PPh4[M2(μ‐H)(μ‐PCy2)(CO)8] and Rh(COD)[ClO4] were in equimolar amounts reacted at –40 to –15 °C in the presence of CO(g) in CH2Cl2/methanol solution under release of PPh4[ClO4] to intermediates. Such species formed in a selective reaction the unifold unsaturated 46 valence electrons title compounds [M2Rh(μ‐PCy2)(μ‐CO)2(CO)8] (M = Re 1 , Mn 2 ; M2 = MnRe 3 ) in yields of > 90%; analogeous the derivatives with the PPh2 bridge could the obtained (M = Re 4 , Mn 5 ). From these clusters the molecular structure of 2 was determined by a single crystal X‐ray analysis. The exchange of the labil CO ligand attached at the rhodium ring atom in 1 – 3 against selected tertiary and secondary phosphanes in solution gave the substitution products [M2RhL(μ‐PCy2)(μ‐CO)2(CO)7] (M = Re: L = PMe3 6 , P(n‐Bu)3 7 , P(n‐C6H4SO3Na)3 8 , HPCy2 9 , HPPh2 10 , HPMen2 11 , M2 = MnRe: L = HPCy2 12 ) nearly quantitative. Such dimanganese rhodium intermediates ligated with secondary phosphanes were converted in a subsequent reaction to the ring‐opened complexes [MnRh(μ‐PCy2)(μ‐H)(CO)5Mn(μ‐PR2)(CO)4] (M = Mn: R = Cy 13 , Ph 14 , Mn 15 ). The molecular structure of 13 , which showed in the time scale of the 31P NMR method a fluxional behaviour, was determined by X‐ray structure analysis. All products obtained were always characterized by means of υ(CO)Ir, 1H and 31P NMR measurements. From the reactants of hydroformylation process, CO(g) 1 – 2 in different solvents afforded at 20 °C under a reversible ring opening reaction the valence‐saturated complexes [MRh(μ‐PCy2)(CO)7M(CO)5] (M = Re 16 , Mn 17 ), whereas the reaction of CO(g) and the ring‐opened 13 to [MnRh(μ‐PCy2)(μ‐H)(CO)6Mn(μ‐PCy2)(CO)4] ( 18 ) was as well reversible. The molecular structures of 17 and 18 were determined by X‐ray analysis. The υ(CO)IR, 1H and 31P NMR measurements in pressure‐resistant reaction vessels at 20 °C ascertained the heterolytic splitting of hydrogen in the reaction of 1 – 2 dissolved in CDCl3 or THF‐d8 under formation of product monoanions [M2Rh(μ‐CO)(μ‐H)(μ‐PCy2)(CO)9] (M = Re, Mn), which also were formed by the reaction of NaBH4 and 1 – 2 . Finally, the substrate 1‐hexene and 1 and 3 gave under the release of the labil CO ligand an η2‐coordination pattern of hexene, which was weekened going from the Re to the Mn neighbor atoms. After the results of the catalytic experiments with 1 and 2 as catalysts, such change in the bonding property revealed an advantageous formation of hydroformylation products for the dirhenium rhodium catalyst 1 and that of isomerisation products of hexene for the dimanganese rhodium catalyst 2 . Par example, 1 generated n‐heptanal/2‐methylhexanal in TOF values of 246 [h–1] (n/iso = 3.4) and the c,t‐hexenes in that of 241 [h–1]. Opposotite to this, 2 achieved such values of 55 [h–1] (n/iso = 3.6) and 473 [h–1]. A triphenylphosphane substitution product of 1 increased the activity of the hydroformylation reaction about 20%, accompanied by an only gradually improved selectivity. The hydrogenation products like alcohols and saturated hydrocarbons known from industrial hydroformylation processes were not observed. The metals manganese and rhenium bound at the rhodium reaction center showed a cooperative effect.  相似文献   

6.
Regioselective Ring Opening Reactions of Unifold Unsaturated Triangular Cluster Complexes [M2Rh(μ‐PR2)(μ‐CO)2(CO)8] (M2 = Re2, Mn2; R = Cy, Ph; M2 = MnRe, R = Ph) with Diphosphanes Equimolar amounts of the triangular title compounds and chelates of the type (Ph2P)2Z (Z = CH2, DPPM ; C=CH2, EPP ) react in thf solution at –40 to –20 °C under release of the labile terminal carbonyl ligand attached to the rhodium atom in good yields (70–90%) to ring‐opened unifold unsaturated complexes [MRh(μ‐PR2)(CO)4M(DPPM bzw. EPP)(μ‐CO)2(CO)3] (DPPM: M2 = Re2, R = Cy 1 , Ph 2 ; Mn2, Cy 5 , Ph 6 ; MnRe, Cy 7 . EPP: M2 = Re2, R = Cy 8 ; Mn2, Cy 10 ). Complexes 1 , 2 and 8 react subsequently under minor uptake of carbon monoxide and formation of the valence saturated complexes [ReRh(μ‐PR2)(CO)4M(DPPM bzw. EPP) (CO)6] (DPPM: R = Cy 3 , Ph 4 . EPP: R = Cy 9 ). Separate experiments ascertained that the regioselective ring opening at the M–M‐edge of the title compounds is limited to reactions with diphosphanes chelates with only one chain member and that the preparation of the unsaturated complexes demands relatively good donor ability of both P atoms. As examples for both types of compounds the molecular structures of 8 and 3 have been determined from single crystal X‐ray structure analysis. Additionally all new compounds are identified by means of ν(CO)IR, 1H‐ and 31P‐NMR data. This includes complexes with a modified chain member in 1 and 5 which, after deprotonation reaction to carbanionic intermediates, could be trapped with [PPh3Au]+ cations as rac‐[MRh(μ‐PR2)(CO)4M((Ph2P)2CHAuPPh3)(μ‐CO)2(CO)3] (M2 = Re 17 , Mn 18 ) and products rac‐[MRh(μ‐PR2)(CO)4M((Ph2P)2CHCH2R)(μ‐CO)2(CO)3] (M2 = Re, R = Ph 19 , n‐Bu 21 , Me 23 ; Mn, Ph 20 , n‐Bu 22 , Me 24 ) which result from Michael‐type addition reactions of 8 or 10 with strong nucleophiles LiR.  相似文献   

7.
The intermetalloid clusters [M2Bi12]4+ (M = Ni, Rh) were synthesized as halogenido‐aluminates in Lewis‐acidic ionic liquids. The reaction of bismuth and NiCl2 in [BMIm]Cl · 5AlCl3 (BMIm = 1‐butyl‐3‐methylimidazolium) at 180 °C yielded black, triclinic (P1 ) crystals of [Ni2Bi12][AlCl4]3[Al2Cl7]. Black, monoclinic (P21/m) crystals of [Rh2Bi12][AlBr4]4 precipitated after dissolving the cluster salt Bi12–xRhX13–x (X = Cl, Br; 0 < x < 1) in [BMIm]Br·4.1AlBr3 at 140 °C. In the cationic cluster [Ni2Bi12]4+, the nickel atoms center two base‐sharing square antiprisms of bismuth atoms (symmetry close to D4h). The valence‐electron‐poorer rhodium‐containing cluster is a distorted variant of this motif: the terminating Bi4 rings are folded to bicyclic “butterflies“ and the central square splits into two dumbbells (symmetry close to D2h). DFT‐based calculations and real‐space bonding analyses place the intermetalloid units between a triple‐decker complex and a conjoined Wade‐Mingos cluster.  相似文献   

8.
X‐ray photoelectron and x‐ray excited Auger spectra were measured for the intermetallic compounds LiMGa2 and Li2MGa (M = Rh, Pd, Ir, Pt). The valence band spectra exhibit characteristic differences in the location of the M d‐band between group 9 elements (Rh, Ir) and group 10 elements (Pd, Pt) on one side and between LiMGa2 and Li2MGa on the other. The experimentally observed differences are in excellent agreement with results from band structure calculations. The combination of binding energy shifts with Auger kinetic energy shifts allowed a separation of initial and final state contributions. Core hole screening is very efficient in accordance with the metallic character of the investigated phases. The magnitude of the screening correlates with the theoretically predicted composition of the density of states at the Fermi level. Application of Wertheim's electrostatic model allowed to estimate the charge distribution for LiRhGa2 and Li2RhGa. The sign of the charges agrees with expectations that result from the Extended Zintl Concept. The results show, how dangerous it is to draw conclusions on the chemistry of such systems from photoemission data alone.  相似文献   

9.
Heterocubane Cluster Compounds (NEt4){Y=M[(μ3‐S)Re(CO)3]33‐E)} (M = W or Mo, Y = O or S, E = S or Se): Structures, Spectroscopy, and Electrochemistry Thiometallates [MS4]2– (M = Mo, W) or [WOS3]2– react with Re(CO)5(O3SCF3) and Li2E (E = S or Se) to yield the following compounds which were structurally characterized: (NEt4){S=W[(μ3‐S)Re(CO)3]33‐S)}(NEt4) ( 1 ), (NEt4){O/S=W[(μ3‐S)Re(CO)3](μ3‐S)}(NEt4) ( 1 / 2 ), (mixed crystals), (NEt4){S=W[(μ3‐S)Re(CO)3]33‐Se)}(NEt4) ( 3 ) and (NEt4){S=Mo[(μ3‐S)Re(CO)3]33‐S)}(NEt4) ( 4 ). The heterocubane anions 1 – 4 contain electron‐rich centers such as rhenium(I) or sulfide whereas molybdenum(VI) or tungsten(VI) act as acceptor sites. Accordingly, the absorption spectra show long‐wavelength metal‐to‐ligand charge transfer transitions, and cyclic voltammetry reveals a quasi‐reversible reduction of the clusters. Although both six‐coordinate rhenium(I) and four‐coordinate metal(VI) centers are present in the clusters there is no evidence for significant metal‐to‐metal charge transfer interaction.  相似文献   

10.
Mg15Ir5Si2 a Magnesium Iridium Silicide with Isolated Ir5Si2 Building Groups Mg15Ir5Si2 (tetragonal, P42/n, a = 1371.7(1) pm, c = 873.0(2) pm, Z=4, 1497 reflections, 103 parameters, R1 = 0.048) was prepared by reaction of the elements at 900 °C in sealed tantalum ampoules. The compound is the silicide with the highest alkaline earth metal content known so far. It is the first example of a silicide with an isolated transition metal silicon building group embedded in a matrix of non‐transition metal atoms. The structure contains planar Ir2SiIrSiIr2 groups with silicon atoms in nearly trigonal planar coordination of three iridium atoms (dIr‐Si = 235 and 236 pm).  相似文献   

11.
Synthesis and Structure of two Mixed Substituted Dialanes Al2X2{Si(SiMe3)3}2 · 2 THF (X = Cl, Br) The syntheses of tris(trimethylsilyl)silyl (hypersilyl) and halide substituted dialanes Al2X2{Si(SiMe3)3}2 · 2 THF (X = Cl, Br) are presented. The results of the X‐ray diffraction experiments are presented and discussed in comparison to the AlIII compounds AlBr2Si(SiMe3)3 · THF and AlBr3 · OPh2.  相似文献   

12.
Ag3Bi14Br21: a Subbromide with Bi24+ Dumbbells and Bi95+ Polyhedra – Synthesis, Crystal Structure and Chemical Bonding Black crystals of Ag3Bi14Br21 = (Bi95+)[Ag3Bi3Br153?](Bi2Br62?), the first argentiferous bismuth subhalide, were obtained from a stoichiometric melt of Ag, Bi, and BiBr3. The compound crystallizes in the monoclinic space group P21/m with lattice parameters a = 1277.78(5) pm, b = 1466.87(6) pm, c = 1342.62(5) pm, and β = 108.47(1)° at 110(5) K. In contrast to all other bismuth subhalides that contain an electron‐rich transition metal, the silver atoms are not bonded to bismuth atoms. Instead they are integrated into the anionic bromometallate network, which consists of [MBr6]‐octahedra (M = Ag, Bi) that share edges and vertices. These corrugated sheets alternate with tessellated layers formed by Bi95+ polycations and hitherto unknown (BiII2Br6)2? groups. The latter anions contain Bi24+ dumbbells (299 pm) and can be represented by the structured formula [Br2BiII(μ–Br)2BiIIBr2]2?. The multi‐center bonding within the Bi95+ cluster and the bent single‐bond in the Bi2 dumbbell can be visualized using the electron localization indicator (ELI‐D).  相似文献   

13.
[Ga6R8]2– (R = SiPh2Me): A Metalloid Cluster Compound with an Unexpected Ga6‐Frame The reaction of a metastable solution of GaBr with a solution of LiSiPh2Me in a toluene/THF mixture results in orange coloured crystals of [Ga6(SiPh2Me)8]2– · 2 [Li(THF)4]+ ( 1 ). The unexpected structure of the planar Ga6 frame (C2h) could also be realized with the help of DFT calculation. DFT calculations furthermore show that 1 is energetically favoured against an octahedral Ga6R62– species and R2. In contrast calculations for the similar Al and B species show that in these cases the octahedral entities are favoured. These results demonstrate that even for similar compounds of B, Al, and Ga Wade rules are too general and that they cannot predict the correct structure. Moreover the atomic arrangement within 1 shows that a structure is preferred which is also present in allotropic β‐Ga and that therefore clusters of this type should be called metalloid or more general elementoid.  相似文献   

14.
The new ternary rhodium borides Mg3Rh5B2 and Sc3Rh5B2 (P4/mbm, Z = 2; a = 943.4(1) pm, c = 292.2(1) pm and a = 943.2(1) pm, c = 308.7(1) pm, respectively) crystallize with the Ti3Co5B2 type structure. Mg and Sc may in part be substituted by a variety of elements M. For M = Si and Fe, homogeneity ranges were found according to A3–xMxRh5B2 with 0 ≤ x ≤ 1.0 for A = Sc and with x up to 1.5 for A = Mg. Quaternary compounds with x = 1 (A2MRh5B2: A/M in short) were prepared with M = Be, Al, Si, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Sn (Co, Ni only with A = Mg; Sn only with A = Sc; P, As with deficiencies). Single crystal X‐ray investigations show an ordered substitutional variant of the Ti3Co5B2 type in which the M atoms are arranged in chains along [001] with intrachain and interchain M–M distances of about 300 pm and 660 pm, respectively. Measuring the magnetisation (1.7 K–800 K) of the phases Mg/Mn, Sc/Mn, Mg/Fe, and Sc/Fe reveals antiferromagnetic interactions in the first and dominating ferromagnetic intrachain interactions in the remaining ones. Interchain interactions of antiferromagnetic nature are evident in Sc/Mn and Mg/Fe leading to metamagnetism below TN = 130 K, while Sc/Fe behaves ferromagnetically below TC = 450 K. The overall trend towards stronger ferromagnetic interactions with increasing valence electron concentration is obvious.  相似文献   

15.
Syntheses, Crystal Structure, and Properties of the Cage‐like, Hexaacidic P12S12N8(NH)6 · 14 H2O and its Salts Li6[P12S12N14] · 26 H2O, (NH4)6[P12S12N14] · 10 H2O, and K6[P12S12N14] · 8 H2O The cage‐like acid P12S12N8(NH)6 · 14 H2O was obtained by the reaction of KSCN with P4S10 via the formation of K6[P12S12N14] · 8 H2O and subsequent ion exchange reactions in aqueous solution. Starting from the acid the salts Li6[P12S12N14] · 26 H2O and (NH4)6[P12S12N14] · 10 H2O were synthesized. According to X‐ray single‐crystal structure analyses the compounds are built up by isosteric P–N cages [P12S12N[3]8N[2]6]6–. Each of them is made up of twelve P3N3 rings, which exclusively exhibit the boat conformation. The cages have the idealized symmetry 2/m3; P12S12N8(NH)6 · 14 H2O: P1, a = 1119.11(7), b = 1123.61(7), c = 1125.80(6) pm, α = 80.186(4), β = 60.391(4), γ = 60.605(4)°, Z = 1; Li6[P12S12N14] · 26 H2O: Fm3, a = 1797.4(1) pm, Z = 4; (NH4)6[P12S12N14] · 10 H2O: P63, a = 1153.2(1), c = 2035.6(2) pm, Z = 2; K6[P12S12N14] · 8 H2O: R3c, a = 1142.37(5), c = 6009.6(3) pm, Z = 6. In the crystal the cages of the acid are crosslinked via hydrate molecules by hydrogen bonds. The cations in the salts show a high‐mobility and are located between the cages.  相似文献   

16.
Synthesis, Structure, and Properties of [nacnac]MX3 Compounds (M = Ge, Sn; X = Cl, Br, I) Reactions of [nacnac]Li [(2,6‐iPr2C6H3)NC(Me)C(H)C(Me)N(2,6‐iPr2C6H3)]Li ( 1 ) with SnX4 (X = Cl, Br, I) and GeCl4 in Et2O resulted in metallacyclic compounds with different structural moieties. In the [nacnac]SnX3 compounds (X = Cl 2 , Br 3 , I 4 ) the tin atom is five coordinated and part of a six‐membered ring. The Sn–N‐bond length of 3 is 2.163(4) Å and 2.176(5) Å of 4 . The five coordinated germanium of the [nacnac]GeCl3 compound 5 shows in addition to the three chlorine atoms further bonds to a carbon and to a nitrogen atom. In contrast to the known compounds with the [nacnac] ligand the afore mentioned reaction creates a carbon–metal‐bond (1.971(3) Å) forming a four‐membered ring. The Ge–N bond length (2.419(2) Å) indicates the formation of a weakly coordinating bond.  相似文献   

17.
MAl2Ta35O70 (M = Na, K, Rb), Low-Valent Oxotantalates with Discrete Cuboctahedral Ta6O12 Clusters The title compounds were prepared by reducing Ta2O5 with tantalum and aluminium in the presence of alkali metal carbonates at 1650 K. NaAl2Ta35O70 was characterized by means of a single crystal X-ray structure determination: space group P 3, lattice parameters a = 780.15(7) pm, c = 2621.7(8) pm, Z = 1, 167 variables, RF = 0.048. The structure can be described in terms of a close packing of oxide ions with specific defects. The sequence of the layers is hhcchchcchh. The characteristic structural units are Ta6O12 clusters being substantially stabilized by Ta–Ta bonding (dTa–Ta = 279.3–283.3 pm, 14 electrons per cluster). The sodium cations occupy acentrically and statistically half of the anti-cuboctahedral sites. The compounds are semiconductors with band gaps Ea of 0.2 to 0.3 eV.  相似文献   

18.
Selective Preparation of Twofold Diorganophosphido-bridged Metallatetrahedranes [Re2(MPR3)2(μ-PR2)2(CO)6] with Re2M2 Metal Core (M = Au, Ag) The reaction of the in situ prepared salt Li[Re2(AuPR)(μ-PR2)(CO)7Cl] (R = R′ = Cy ( 1 a ), R = Cy, R′ = Ph ( 1 b ), R = Ph, R′ = Cy ( 1 c ), R = Ph, R′ = Et ( 1 d ), R = Ph, R′ = Ph ( 1 e )) with one equivalent HPR in methanolic solution at room temperature yields the neutral cluster complexes [Re2(AuPR)(μ-PR2)(CO)7(ax-HPR) (R = R′ = R″ = Cy ( 2 a ), Ph ( 2 b ), R = R′ = Cy, R″ = Et ( 2 c ), R = Cy, R′ = R″ = Ph ( 2 d ), R = Cy, R′ = Ph, R″ = Et ( 2 e ), R = R″ = Ph, R′ = Et ( 2 f ), R = Ph, R′ = Cy, R″ = Et (2 g)). Photochemically induced these complexes react in the presence of the organic base DBU in THF solution to give the doubly phosphido bridged anions Li[Re2(AuPR)(μ-PR2)(μ-PR)(CO)6], which were characterized as salts PPh4[Re2(AuPR)(μ-PR2)(μ-PR)(CO)6] (R = R′ = R″ = Ph ( 3 a ), R = R′ = Ph, R″ = Cy ( 3 b ), R = Ph, R′ = Cy, R″ = Et ( 3 c ), R = R″ = Ph, R′ = Et ( 3 d )). These precursor complexes 3 then react with one equivalent of ClMPR (M = Au, Ag) to doubly phosphido bridged metallatetrahedranes [Re2(MPR3)2(μ-PR2)(μ-PR)(CO)6] (M = Au, R = R′ = R″ = Ph ( 4 a ), M = Au, R′ = Et, R = R″ = Ph ( 4 b ), M = Au, R = R′ = Ph, R″ = Cy ( 4 c ), M = Au, R = Cy, R′ = Ph, R″ = Et ( 4 d ), M = Ag, R = R′ = R″ = Ph ( 4 e )). All isolated cluster complexes were characterized and identified by the following analytical methods: NMR- (1H, 31P) and ν(CO) IR-spectroscopy and, additionally, complexes 2 b , 4 a and 4 e by X-ray structure analysis.  相似文献   

19.
Bismuth(II) Chalcogenometallates(III) Bi2M4X8, Compounds with Bi24+ Dumbbells (M = Al, Ga and X = S, Se) The ternary bismuth(II) chalcogenometallates(III) Bi2M4X8 (with M = Al, Ga and X = S, Se) were synthesized from the binary chalcogenides M2X3 and Bi2X3 and elementary bismuth. All compounds are diamagnetic semiconductors with Eg (opt.) = 1.8–2.7 eV. The phases (except Bi2Al4Se8) are thermodynamically stable and decompose peritectically above 965–1020 K. Bi2Al4Se8 is metastable below 825 K and is obtained only by rapid quenching from T > 825 K. The isotypic compounds crystallize in a new tetragonal tP28 structure type (P4/nnc). The characteristic unit is the hitherto unknown clustercation Bi24+, with the mean bond length d(Bi–Bi) = 314.2 pm, the Raman frequency 102 cm–1 ≤ νs ≤ 108 cm–1, and the mean force constant of f = 0.68 N · cm–1. The Electron Localization Function, ELF, shows the covalent Bi–Bi bond, the lone electron pairs of the ψ-octahedrally coordinated Bi(II) cations, and the polar character of the Bi–X bonds.  相似文献   

20.
[PtIn6][GaO4]2 – The First Oxide Containing [PtIn6] Octahedra. Preparation, Characterisation, and Rietveld Refinement – With a Remark to the Solid Solution Series [PtIn6][GaO4]2‐x[InO4]x (0 < x ≤ 1) The novel oxides [PtIn6][GaO4]2–x[InO4]x (0 < x ≤ 1) are formed by heating intimate mixtures of Pt, In, In2O3, and Ga2O3 in the corresponding stoichiometric ratio in corundum crucibles under an atmosphere of argon (1220 K, 70 h). The compounds are black, stable in air at room temperature, reveal a semiconducting behaviour, and decompose only in oxidizing acids. X‐ray powder diffraction patterns can be indexed by assuming a face centered cubic unit cell with lattice parameters ranging from a = 1001.3(1) pm (x = 0) to a = 1009.3(1) pm (x = 1). According to a Rietveld refinement [PtIn6][GaO4]2 crystallizes isotypic to the mineral Pentlandite (Fm3m, Z = 4, R(profile) = 6.11%, R(intensity) = 3.95%). The characteristic building units are isolated [PtIn6]10+ octahedra which are linked via [GaO4]5– tetrahedra to a three dimensional framework. Starting from [PtIn6][GaO4]2 the substitution of Ga3+ ions by larger In3+ ions leads to the formation of a solid solution series according to the general formula [PtIn6][GaO4]2–x[InO4]x and becomes apparent in an increase of the lattice parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号