首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new triphenylamine‐containing diamine monomer, 4,4′‐diamino‐4″‐tert‐butyltriphenylamine, was successfully synthesized by the cesium fluoride‐mediated N,N‐diarylation of 4‐tert‐butylaniline with 4‐fluoronitrobenzene, followed by the reduction of the nitro group. The obtained diamine monomer was reacted with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides to produce two series of novel triphenylamine‐based polyamides and polyimides with pendent tert‐butyl substituents. Most of the polymers were readily soluble in polar organic solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide (DMAc), and could be solution cast into tough and flexible polymer films. These polymers showed high glass transition temperatures between 282 and 320 °C, and they were fairly stable up to a temperature above 450 °C (for polyamides) or 500 °C (for polyimides). These polymers exhibited UV absorption maxima around 308 to 361 nm. The photoluminescence spectra of the polyamides in DMAc exhibited a peak emission wavelength in the blue at 421–433 nm. Cyclic voltammograms of polyamides and polyimides showed an oxidation wave at 1.0–1.1 V versus Ag/AgCl in an acetonitrile solution. All the polyamides and polyimides exhibited excellent reversibility of electrochromic characteristics by continuous several cyclic scans between 0.0 and 1.1–1.3 V, with a color change from the original pale yellowish neutral form to the green or blue oxidized forms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4579–4592, 2006  相似文献   

2.
A series of new soluble poly(amide‐imide)s were prepared from the diimide‐dicarboxylic acid 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]hexafluoropropane with various diamines by direct polycondensation in N‐methyl‐2‐pyrrolidinone containing CaCl2 with triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.52–0.86 dL · g?1. The poly(amide‐imide)s showed an amorphous nature and were readily soluble in various solvents, such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, pyridine, and cyclohexanone. Tough and flexible films were obtained through casting from DMAc solutions. These polymer films had tensile strengths of 71–107 MPa and a tensile modulus range of 1.6–2.7 GPa. The glass‐transition temperatures of the polymers were determined by a differential scanning calorimetry method, and they ranged from 242 to 279 °C. These polymers were fairly stable up to a temperature around or above 400 °C, and they lost 10% of their weight from 480 to 536 °C and 486 to 537 °C in nitrogen and air, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3498–3504, 2001  相似文献   

3.
A novel, trifluoromethyl‐substituted, bis(ether amine) monomer, 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was synthesized through the nucleophilic displacement of 2‐chloro‐5‐nitrobenzotrifluoride with 1,4‐dihydroxynaphthalene in the presence of potassium carbonate in dimethyl sulfoxide, followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new fluorine‐containing polyimides with inherent viscosities of 0.57–0.91 dL/g were prepared by reacting the diamine with six commercially available aromatic dianhydrides via a conventional, two‐step thermal or chemical imidization method. Most of the resulting polyimides were soluble in strong polar solvents such as N‐methylpyrrolidone and N,N‐dimethylacetamide (DMAc). All the polyimides afforded transparent, flexible, and strong films with good tensile properties. These polyimides exhibited glass‐transition temperatures (Tg's) (by DSC) and softening temperatures (by thermomechanical analysis) in the ranges of 252–315 and 254–301 °C, respectively. Decomposition temperatures for 5% weight loss all occurred above 500 °C in both air and nitrogen atmospheres. The dielectric constants of these polyimides ranged from 3.03 to 3.71 at 1 MHz. In addition, a series of new, fluorinated polyamides with inherent viscosities of 0.32–0.62 dL/g were prepared by the direct polycondensation reaction the diamine with various aromatic dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides were soluble in polar solvents such as DMAc and could be solution‐cast into tough and flexible films. These polyamides had Tg's between 228 and 256 °C and 10% weight‐loss temperatures above 400 °C in nitrogen or air. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2377–2394, 2004  相似文献   

4.
Jiang  Jianwen  Huang  Shuiping  Liu  Yuan  Sheng  Shouri  Huang  Zhenzhong  Song  Caisheng 《中国化学》2010,28(1):102-110
9,9‐Bis(4‐hydroxyphenyl)xanthene (BHPX) was synthesized in 82% yield from xanthenone in a one‐pot, two‐step synthetic procedure. A new diacyl chloride monomer, 9,9‐bis[4‐(chloroformylphenoxy)phenyl]xanthene (BCPX), was synthesized in three steps from the nucleophilic fluorodisplacement of 4‐fluorobenzonitrile with the dipotassium bisphenolate of BHPX, followed by alkaline hydrolysis of the intermediate bis(ether nitrile), and then chlorination with thionyl chloride. Several novel aromatic polyamides containing ether and bulky xanthene groups with the inherent viscosities (0.72–0.98 dL/g) were prepared by the low temperature polycondensation of BCPX with various aromatic diamines in N,N‐dimethylacetamide (DMAc) solution containing pyridine (Py). All new polyamides were amorphous and readily soluble in various polar solvents such as DMAc, N,N‐dimethylformamide (DMF), N‐methyl‐2‐pyrrolidone (NMP) and Py. These polymers showed relatively high glass transition temperatures between 236 and 298°C, decomposition temperatures at 10% weight loss ranging from 490 to 535°C and 483 to 515°C in nitrogen and air, respectively, and char yields at 700°C in nitrogen higher than 50%. Transparent, flexible, and tough films of these polymers cast from DMAc solutions exhibited tensile strengths ranging from 82 to 106 MPa, elongations at break from 10% to 25%, and initial moduli from 2.0 to 2.8 GPa.  相似文献   

5.
A series of new strictly alternating aromatic poly(ester‐imide)s having inherent viscosities of 0.20–0.98 dL/g was synthesized by the diphenylchlorophosphate (DPCP) activated direct polycondensation of the preformed imide ring‐containing diacid, 3,3‐bis[4‐(trimellitimidophenoxy)phenyl]phthalide (I), with various bisphenols in a medium consisting of pyridine and lithium chloride. The diimide–diacid I was prepared from the condensation of 3,3‐bis[4‐(4‐aminophenoxy)phenyl]phthalide and trimellitic anhydride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents such as N‐methyl‐2‐pyrrolidone (NMP) and N,N‐dimethylacetamide (DMAc). Transparent and flexible films of these polymers could be cast from their DMAc solutions. The cast films had tensile strengths ranging 66–105 MPa, elongations at break from 7–10%, and initial moduli from 1.9–2.4 GPa. The glass‐transition temperatures of these polymers were recorded between 208–275 °C. All polymers showed no significant weight loss below 400 °C in the air or in nitrogen, and the decomposition temperatures at 10% weight loss all occurred above 460 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1090–1099, 2000  相似文献   

6.
A new triphenylamine‐containing aromatic diamine monomer, N,N‐bis(4‐aminophenyl)‐N,N′‐bis(4‐tert‐butylphenyl)‐1,4‐phenylenediamine, was synthesized by an established synthetic procedure from readily available reagents. A novel family of electroactive polyamides with di‐tert‐butyl‐substituted N,N,N,N′‐tetraphenyl‐1,4‐phenylenediamine units were prepared via the phosphorylation polyamidation reactions of the newly synthesized diamine monomer with various aromatic or aliphatic dicarboxylic acids. All the polymers were amorphous with good solubility in many organic solvents, such as N‐methyl‐2‐pyrrolidinone (NMP) and N,N‐dimethylacetamide, and could be solution‐cast into tough and flexible polymer films. The polyamides derived from aromatic dicarboxylic acids had useful levels of thermal stability, with glass‐transition temperatures of 269–296 °C, 10% weight‐loss temperatures in excess of 544 °C, and char yields at 800 °C in nitrogen higher than 62%. The dilute solutions of these polyamides in NMP exhibited strong absorption bands centered at 316–342 nm and photoluminescence maxima around 362–465 nm in the violet‐blue region. The polyamides derived from aliphatic dicarboxylic acids were optically transparent in the visible region and fluoresced with a higher quantum yield compared with those derived from aromatic dicarboxylic acids. The hole‐transporting and electrochromic properties were examined by electrochemical and spectro‐electrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium‐tin oxide‐coated glass substrate exhibited two reversible oxidation redox couples at 0.57–0.60 V and 0.95–0.98 V versus Ag/AgCl in acetonitrile solution. The polyamide films revealed excellent elcterochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and blue oxidized forms at applied potentials ranging from 0.0 to 1.2 V. These anodically coloring polymeric materials showed interesting electrochromic properties, such as high coloration efficiency (CE = 216 cm2/C for the green coloring) and high contrast ratio of optical transmittance change (ΔT%) up to 64% at 424 nm and 59% at 983 nm for the green coloration, and 90% at 778 nm for the blue coloration. The electroactivity of the polymer remains intact even after cycling 500 times between its neutral and fully oxidized states. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2330–2343, 2009  相似文献   

7.
A new dicarboxylic acid containing a diphenylmethylene linkage, bis[4‐(4‐carboxyphenoxy)phenyl]diphenylmethane (BCAPD), was prepared from bis(4‐hydroxphenyl)diphenylmethane and p‐fluorobenzonitrile via an aromatic nucleophilic substitution reaction followed by hydrolysis. A series of novel polyamides were prepared by the direct polycondensation of BCAPD and various aromatic diamines. The polymers were produced with moderate to high inherent viscosities of 0.80–0.85 dL g?1. Nearly all the polymers were readily soluble in polar solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide, in less polar solvents such as pyridine and cyclohexanone, and in tetrahydrofuran. All the polymers were amorphous, and the polyamide films had a tensile strength and a tensile modulus greater than 80 MPa and 2.0 GPa, respectively. These polyamides had glass‐transition temperatures between 249 and 274 °C, and their temperatures at a 10% weight loss were 477–538 and 483–540 °C in nitrogen and air atmospheres, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1156–1161, 2001  相似文献   

8.
A new bulky pendent bis(ether anhydride), 1,1‐bis[4‐(4‐dicarboxyphenoxy)phenyl]‐4‐phenylcyclohexane dianhydride, was prepared in three steps, starting from the nitrodisplacement of 1,1‐bis(4‐hydroxyphenyl)‐4‐phenylcyclohexane with 4‐nitrophthalonitrile to form bis(ether dinitrile), followed by alkaline hydrolysis of the bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s were prepared from the bis(ether anhydride) with various diamines by a conventional two‐stage synthesis including polyaddition and subsequent chemical cyclodehydration. The resulting poly(ether imide)s had inherent viscosities of 0.50–0.73 dL g?1. The gel permeation chromatography measurements revealed that the polymers had number‐average and weight‐average molecular weights of up to 57,000 and 130,000, respectively. All the polymers showed typical amorphous diffraction patterns. All of the poly(ether imide)s showed excellent solubility in comparison with the other polyimides derived from adamantane, norbornane, cyclododecane, and methanohexahydroindane and were readily dissolved in various solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, pyridine, cyclohexanone, tetrahydrofuran, and even chloroform. These polymers had glass‐transition temperatures of 226–255 °C. Most of the polymers could be dissolved in chloroform in as high as a 30 wt % concentration. Thermogravimetric analysis showed that all polymers were stable up to 450 °C, with 10% weight losses recorded from 458 to 497 °C in nitrogen. These transparent, tough, and flexible polymer films could be obtained by solution casting from DMAc solutions. These polymer films had tensile strengths of 79–103 MPa and tensile moduli of 1.5–2.1 GPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2066–2074, 2002  相似文献   

9.
A series of new polyamides containing both sulfone and oxyethylene moieties in the polymer chain was prepared by the direct polycondensation of the diamine monomer 2,2‐bis[4‐[2‐(4‐aminophenoxy)ethoxy]phenyl]sulfone (BAEPS) and various aromatic dicarboxylic acids in N‐methyl‐2‐pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. Polymers were produced with inherent viscosities of 0.30–0.60 dl/g and identified by elemental analysis, and infrared and nuclear magnetic resonance spectra. Most of the polymers were readily dissolved in polar solvents such as NMP, dimethylsulfoxide, N,N‐dimethylacetamide, N,N‐dimethylformamide and m‐cresol at room temperature. Polymers containing rigid and symmetric p‐phenylene, naphthalene and p‐biphenylene moieties revealed a crystalline nature and showed no solubility in organic solvents. These polyamides had 10% weight loss temperatures ranging between 423 and 465 °C in nitrogen atmosphere and glass transition temperatures between 170 and 305 °C. The polymers with crystallinity nature exhibited melting endotherms (Tm) below 386 °C in differential scanning calorimetry trace. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
A dicarboxylic acid monomer, 5-phthalimidoisophthalic acid, containing a phthalimide pendent group was prepared by the condensation of 5-aminoisophthalic acid and phthalic anhydride in glacial acetic anhydride. The monomer was reacted with various aromatic diamines to produce polyamides using triphenyl phosphite and pyridine as condensing agents. These polyamides were produced with inherent viscosities of 0.64–1.14 dL · g−1. All the polymers, characterized by wide-angle X-ray diffraction, revealed an amorphous nature resulting from the presence of the bulky pendent group. These polyamides exhibited excellent solubility in a variety of solvents such as N- methyl-2-pyrrolidinone, N,N-dimethylacetamide (DMAc), N,N-dimethylformamide, dimethyl sulfoxide, pyridine, and cyclohexanone. These polyamides showed glass-transition temperatures (Tg's) between 247 and 273 °C (by DSC) and 248 and 337 °C (by a dynamic mechanical analyzer). The thermogravimetric analytic measurement revealed the decomposition temperature at 10% weight-loss temperatures (Td10) ranging from 442 to 530 °C in nitrogen. The polyamides containing phthalimide groups exhibited higher Tg and Td10 values than those having no phthalimide groups. Transparent, tough, and flexible films of these polyamides could be cast from the DMAc solutions. These casting films had tensile strengths ranging from 81 to 126 MPa, elongations at break ranging from 7 to 13%, and tensile moduli ranging from 2.0 to 2.9 GPa. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1557–1563, 2001  相似文献   

11.
A new triphenylamine‐based aromatic dicarboxylic acid monomer, 4‐tert‐butyl‐4′,4″‐dicarboxytriphenylamine ( 2 ), was synthesized from the cesium fluoride mediated N,N‐diarylation reaction of 4‐tert‐butylaniline with 4‐fluorobenzonitrile and subsequent alkaline hydrolysis of the dinitrile intermediate. A series of six aromatic polyamides 4a‐4f with tert‐butyltriphenylamine groups was prepared from the newly synthesized dicarboxylic acid and various aromatic diamines. These polyamides were readily soluble in many organic solvents and could be solution‐cast into flexible and strong films. The glass‐transition temperatures of these polymers were in the range of 274–311 °C. These polymers exhibited strong UV‐vis absorption bands at 356–366 nm in NMP solution. Their photoluminescence spectra showed maximum bands around 433–466 nm in the blue region. Cyclic voltammograms of all the polyamides exhibited reversible oxidation redox couples in acetonitrile. The polyamide 4f, with tert‐butyltriphenylamine segment in both diacid and diamine residues, exhibited stable electrochromic characteristics with a color change from a colorless neutral form, through a green semioxidized form, to a deep purple fully oxidized form. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2798–2809, 2010  相似文献   

12.
A new diimide‐dicarboxylic acid, 2,2′‐dimethyl‐4,4′‐bis(4‐trimellitimidophenoxy)biphenyl (DBTPB), containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by the condensation reaction of 2,2′‐dimethyl‐4,4′‐bis(4‐minophenoxy)biphenyl (DBAPB) with trimellitic anhydride in glacial acetic acid. A series of new polyamide‐imides were prepared by direct polycondensation of DBAPB and various aromatic diamines in N‐methyl‐2‐pyrrolidinone (NMP), using triphenyl phosphite and pyridine as condensing agents. The polymers were produced with high yield and moderate to high inherent viscosities of 0.86–1.33 dL · g−1. Wide‐angle X‐ray diffractograms revealed that the polymers were amorphous. Most of the polymers exhibited good solubility and could be readily dissolved in various solvents such as NMP, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide (DMF), dimethyl sulfoxide, pyridine, cyclohexanone, and tetrahydrofuran. These polyamide‐imides had glass‐transition temperatures between 224–302 °C and 10% weight loss temperatures in the range of 501–563 °C in nitrogen atmosphere. The tough polymer films, obtained by casting from DMAc solution, had a tensile strength range of 93–115 MPa and a tensile modulus range of 2.0–2.3 GPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 63–70, 2001  相似文献   

13.
Thermoplastic and organic‐soluble aromatic polyamides containing both bulky triphenylethane units and flexible ether linkages were prepared directly from 1,1‐bis[4‐(4‐carboxyphenoxy)phenyl]‐1‐phenylethane ( III ) with various aromatic diamines or from 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane ( V ) with various aromatic dicarboxylic diacids via triphenyl phosphite and pyridine. These polyamides had inherent viscosities ranging from 0.71 to 1.77 dL/g. All the polymers easily were dissolved in aprotic polar solvents such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide, and some even could be dissolved in less polar solvents such as tetrahydrofuran. The flexible and tough films cast from the polymer solutions possessed tensile strengths of 89 to 104 MPa. The polyamides were thermally stable up to 460°C in air or nitrogen. Glass‐transition temperatures of these polyamides were observed in a range of 179 to 268°C via differential scanning calorimetry or thermomechanical analysis. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 247–260, 2000  相似文献   

14.
A set of new aromatic polyamides were synthesized by the direct phosphorylation condensation of 4‐(1‐adamantyl)‐1,3‐bis‐(4‐aminophenoxy)benzene with various diacids. The polymers were produced with high yields and moderate to high inherent viscosities (0.43–1.03 dL/g), and the weight‐average molecular weights and number‐average molecular weights, determined by gel permeation chromatography, were in the range of 37,000–93,000 and 12,000–59,000, respectively. The polyamides were essentially amorphous and soluble in a variety of solvents such as N,N‐dimethylacetamide (DMAc), cyclohexanone, and tetrahydrofuran. They showed glass‐transition temperatures in the range of 240–300 °C (differential scanning calorimetry) and 10% weight‐loss temperatures over 450 °C, as revealed by thermogravimetric analysis in nitrogen. All the polymers gave strong films via casting from DMAc solutions, and these films exhibited good mechanical properties, with tensile strengths in the range of 77–92 MPa and tensile moduli between 1.5 and 2.5 GPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1014–1023, 2000  相似文献   

15.
A new type of tetraimide‐dicarboxylic acid ( I ) was synthesized starting from the ring‐opening addition of m‐aminobenzoic acid, 4,4′‐oxydiphthalic anhydride, and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane at a 2:2:1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP), followed by cyclodehydration to the diacid I . A series of soluble and light‐colored poly(amide‐imide‐imide)s ( III a–j) was prepared by triphenyl phosphite‐activated polycondensation from I with various aromatic diamines ( II a–j). All films cast from N,N‐dimethylacetamide (DMAc) had cutoff wavelengths shorter than 390 nm (374–390 nm) and b* values between 25.26 and 43.61; these polymers were much lighter in color than the alternating trimellitimide series. All of the polymers were readily soluble in a variety of organic solvents such as NMP, DMAc, N,N‐dimethylformamide, dimethyl sulfoxide, and even in less polar m‐cresol and pyridine. Polymers III a–j afforded tough, transparent, and flexible films that had tensile strengths ranging from 96 to 118 MPa, elongations at break from 9 to 11%, and initial moduli from 2.0 to 2.5 GPa. The glass‐transition temperatures of the polymers were recorded at 240–268 °C. They had 10% weight loss at a temperature above 540 °C and left more than 55% residue even at 800 °C in nitrogen. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 707–718, 2002; DOI 10.1002/pola.10153  相似文献   

16.
A series of organosoluble aromatic polyimides (PIs) was synthesized from 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐4,7‐methanohexahydroindan (3) and commercial available aromatic dianhydrides such as 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA), 4,4′‐sulfonyl diphthalic anhydride (SDPA), or 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropanic dianhydride (6FDA). PIs (IIIc–f), which were synthesized by direct polymerization in m‐cresol, had inherent viscosities of 0.83–1.05 dL/g. These polymers could easily be dissolved in N,N′‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF), pyridine, m‐cresol, and dichloromethane. Whereas copolymerization was proceeded with equivalent molar ratios of pyromellitic dianhydride (PMDA)/6FDA, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA)/6FDA, or BTDA/SDPA, or ½ for PMDA/SDPA, copolyimides (co‐PIs), derived from 3 and mixed dianhydrides, were soluble in NMP. All the soluble PIs could form transparent, flexible, and tough films, and they showed amorphous characteristics. These films had tensile strengths of 88–111 MPa, elongations at break of 5–10% and initial moduli of 2.01–2.67 GPa. The glass transition temperatures of these polymers were in the range of 252–311°C. Except for IIIe, the 10% weight loss temperatures (Td) of PIs were above 500°C, and the amount of carbonized residues of the PIs at 800°C in nitrogen atmosphere were above 50%. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1681–1691, 1999  相似文献   

17.
A series of new aromatic polyamides having pendent naphthoxy groups were synthesized by the triphenyl phosphite‐activated polycondensation of (2‐naphthoxy)terephthalic acid (NOTPA) with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The diacid monomer NOTPA was prepared from the nitro displacement of dimethyl 2‐nitroterephthalate with the potassium naphthoxide of β‐naphthol, followed by base‐induced ester hydrolysis. All the resulting polymers were noncrystalline and readily soluble in aprotic polar solvents such as NMP and N,N‐dimethylacetamide. Almost all the polymers could be solution‐cast to tough, creasable amorphous films with good mechanical properties, the values of tensile strengths ranging from 90 to 124 MPa with initial moduli ranging from 1.72 to 2.51 GPa. Except for two examples, all the other polyamides displayed discernible glass transitions between 189 and 248 °C in the differential scanning calorimetric traces. These polyamides showed insignificant decomposition below 400 °C in nitrogen or air. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1781–1789, 2002  相似文献   

18.
A novel aromatic dicarboxylic acid monomer, 4,4′-(2,3-naphthalenedioxy)-dibenzoic acid ( 3 ), was prepared by the fluorodisplacement reaction of p-fluorobenzonitrile with 2,3-dihydroxynaphthalene in N,N-dimethylformamide (DMF) in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate dinitrile. A series of novel aromatic polyamides containing ortho-linked aromatic units in the main chain were synthesized by the direct polycondensation of diacid 3 and a variety of aromatic diamines using triphenyl phosphite and pyridine as condensing agents in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities higher than 0.74 and up to 2.10 dL/g. All of these polyamides were soluble in polar solvents, such as NMP, DMF, N,N-dimethylacetamide (DMAc), and dimethyl sulfoxide. Transparent, flexible, and tough films could be cast from their DMAc or NMP solutions. The solvent-cast films had high tensile strengths and moduli. Extensions to break were relatively low, except for the polymers derived from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and 3,4′-oxydianiline, which had elongations of 82 and 62%, respectively. Except for the polyamide based on p-phenylenediamine, all the other polyamides were amorphous in nature. All the polymers are thermally stable to temperatures in excess of 450°C in either air or nitrogen atmosphere. The polymers exhibited glass transition temperatures ranging from 183 to 260°C and decomposition temperatures (10% weight loss) ranging from 462–523°C in air and 468–530°C in nitrogen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3385–3391, 1997  相似文献   

19.
A novel fluorinated diamine monomer, 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐2,5‐di‐tert‐butylbenzene ( 2 ), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 2,5‐di‐tert‐butylhydroquinone in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C. Fluorinated polyimides ( 5a – 5f ) were synthesized from diamine 2 and various aromatic dianhydrides ( 3a – 3f ) via thermal or chemical imidization. These polymers had inherent viscosities of 0.77–1.01 dL/g. The 5 series polyimides were soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, and N,N‐dimethylformamide and were even soluble in dioxane, tetrahydrofuran, and dichloromethane. 5 (C) showed cutoff wavelengths between 363 and 404 nm and yellowness index (b*) values of 6.5–40.2. The polyimide films had tensile strengths of 93–114 MPa, elongations to break of 9–12%, and initial moduli of 1.7–2.1 GPa. The glass‐transition temperatures were 255–288 °C. The temperatures of 10% weight loss were all above 460 °C in air or nitrogen atmospheres. In comparison with a nonfluorinated polyimide series based on 1,4‐bis(4‐aminophenoxy)‐2,5‐di‐tert‐butylbenzene, the 5 series showed better solubility and lower color intensity, dielectric constants, and moisture absorption. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2272–2284, 2004  相似文献   

20.
4,4′-(2,7-Naphthalenedioxy)dibenzoic acid, a new aromatic dicarboxylic acid monomer, was prepared starting from 2,7-dihydroxynaphthalene and p-fluorobenzonitrile in three steps. Using triphenyl phosphite (TPP) and pyridine as condensing agents, a series of novel aromatic polyamides were synthesized by the direct polycondensation of the diacid monomer and aromatic diamines in N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities ranging from 0.48 to 0.67 dL/g. Most of these polyamides were readily soluble in polar solvents, such as NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films were cast from their DMAc solutions. They had tensile strengths of 65–70 MPa, elongations to break of 5–7%, and initial moduli of 1.4–1.6 GPa. Most of these polymers proved to be amorphous, with glass transition temperatures in the range between 143–227°C. Thermogravimetric analysis (TG) showed that all the polyamides were stable up to 450°C in both air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1469–1478, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号