首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystals of KBaNbS4 have been prepared by the reaction of Nb with an in situ formed melt of K2S3, BaS, and S at 500 °C. Satellite reflections observed in X‐ray diffraction experiments of these crystals indicate the presence of a one‐dimensional lattice distortion. The modulated structure has been solved and refined from X‐ray data using the superspace group approach. KBaNbS4 can be described in the (3 + 1)‐dimensional superspace group Pnma(α00)0s0 with lattice parameters a = 9.187(1), b = 7.001(1), and c = 12.494(1) Å and a modulation vector q = (0, 0.629(1), 0). In the structure the NbS4 tetrahedra are stacked along the a axis and show a slight tilting against each other. The K+ and Ba2+ ions follow this tilting, both are slightly shifted from their positions in the average structure. The modulation does not lead to a significant change in the coordination spheres of the metal atoms. The small effects of the modulation correspond to the relatively weak intensities of the satellite reflections. Results of temperature dependent X‐ray investigations indicate that K+ librates at higher temperatures and the surrounding S2? anions follow this motion. With decreasing temperature the libration of K+ is reduced and the coordination geometry freezes under formation of an incommensurate modulation. The heavier Ba and Nb atoms are also affected by positional modulation of the substructure and accommodate to their environment.  相似文献   

2.
By reacting platinum with alkali metals (A = K, Rb, Cs) a new family of binary alkali metal platinides has been synthesized and characterized by chemical analysis, X‐ray powder diffraction, thermal analysis (DTA and DSC), and magnetic measurements. All three compounds exhibit similar XRD‐patterns with strong reflections that can be indexed on the basis of a rhombohedral crystal system (KxPt: a = 2.6462(1), c = 17.123(1); RbxPt: a = 2.6415(1) Å, c = 17.871(1) Å; CsxPt: a = 2.6505(1) Å, c = 18.536(1) Å; x < ½. The a lattice constant is independent on the alkali metal used and of value close to the Pt–Pt distance in NaPt2 (2.645Å). The c parameter increases monotonically with the growing atomic radius of the alkali metal. The average structure of the alloys consists of cubic close packed layers of platinum atoms with layers of disordered alkali metals in between. For all compounds besides the strong reflections small satellites are observed which cannot be indexed together with the rhombohedral peaks in any rational 3‐dimensional lattice. However, these satellites can be indexed as incommensurate modulations within the ab plane (found propagation vectors k = (0.1011, 0.2506, 0) for CsxPt, and k = (0.0168, 0.2785, 0) for RbxPt).  相似文献   

3.
Li2Sr4Al2Ta2N8O was synthesized from Li3AlN2, Sr(NH2)2, LiN3, and lithium metal as fluxing agent in weld shut tantalum crucibles. Single crystals were obtained as byproduct from reaction with the ampoule material. The crystal structure (P21/n (no. 14), a = 9.4081(19), b = 10.012(2), c = 5.9832(12) Å, β = 93.44(3)°, Z = 2) was solved on the basis of single‐crystal X‐ray diffraction data. Li2Sr4Al2Ta2N8O is built up of vertex sharing AlN4 and TaN4 tetrahedra, forming a BCT‐zeolite type structure with Sr2+ ions and molecular Li2O units incorporated into the voids. Lattice energy calculations (MAPLE) confirmed the electrostatic bonding interactions and the chemical composition.  相似文献   

4.
Two new metal‐organic coordination polymers[Eu(m‐BDC)1.5(MOPIP) · 1/2H2O]n ( 1 ) and [Co(m‐BDC)(MOPIP)2 · 2H2O]n ( 2 ) [m‐H2BDC = benzene‐1, 3‐dicarboxylic acid, MOPIP = 2‐(4‐methoxyphenyl)‐1H‐imidazo[4, 5‐f] 1 , 10 phenanthroline] were hydrothermally synthesized and structurally characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. The coordination polymers crystallize in monoclinic space group P21/m for 1 ( 2 : P21/n), with a = 9.779(2), b = 18.242(4), c = 17.146(3) Å, β = 106.41(3)° for 1 , and with a = 8.2153(16), b = 27.974(6), c = 17.974(4) Å, β = 100.40(3)° for 2 . The crystal structure of complex 1 is a zipper‐like chain of octacoordinate Eu3+ ions, in which Eu3+ ions are bridged in two coordination modes by m‐BDC2+ ligands and decorated by MOPIP ligands. The molecular structure of complex 2 consists of a hexacoordinte Co2+ atom, which generates a slightly distorted octahedral arrangement, and assembles into three‐dimensional supramolecular nets by π ··· π stacking interactions. Additionally, these two compounds show strong fluorescence in the solid state at room temperature. Natural bond orbital (NBO) analysis is performed by using the NBO method built in Gaussian 03 Program. The calculation results show a weak covalent interaction between the coordinated atoms and metal ions.  相似文献   

5.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

6.
The crystal and molecular structure of γ‐P4S6 was determined from single‐crystal X‐ray diffraction. It crystallizes monoclinically in the space group P21/m (No. 11) with a = 6.627(3) Å, b = 10.504(7) Å, c = 6.878(3) Å, β = 90.18(4)°, V = 478.8(4) Å3, and Z = 2. The structure consists of cage‐like P4S6 molecules with CS symmetry arranged with the topology of a cubic close packing.  相似文献   

7.
A series of 2‐(4‐n‐alkylphenyl)indenes (3) with different alkyl substituents (CH3 to C10H21) were synthesized and systematically characterized using differential scanning calorimetry, polarizing optical microscopy and X‐ray diffraction compared with 2‐phenylindene (3a). Depending on the alkyl chain length, highly ordered crystal‐smectic E mesophases were observed and confirmed by X‐ray diffraction for the derivatives 3h–3k with heptyl to decyl chains (n = 6?9). For 3f with a pentyl side chain (n = 4), an X‐ray crystal structure analysis was carried out.  相似文献   

8.
The crystal structures of the M2NaIO6 series (M = Ca, Sr, Ba), prepared at 650 °C by ceramic methods, were determined from conventional laboratory X‐ray powder diffraction data. Synthesis and crystal growth were made by oxidizing I with O2(air) to I7+ followed by crystal growth in the presence of NaF as mineralizator, or by the reaction of the alkali‐metal periodate with the alkaline‐earth metal hydroxide. All three compounds are insoluble and stable in water. The barium compound crystallizes in the cubic space group Fm3m (no. 225) with lattice parameters of a = 8.3384(1) Å, whereas the strontium and calcium compounds crystallize in the monoclinic space group P21/c (no. 14) with a = 5.7600(1) Å, b = 5.7759(1) Å, c = 9.9742(1) Å, β = 125.362(1)° and a = 5.5376(1) Å, b = 5.7911(1) Å, c = 9.6055(1) Å, β = 124.300(1)°, respectively. The crystal structure consists of either symmetric (for Ba) or distorted (for Sr and Ca) perovskite superstructures. Ba2NaIO6 contains the first perfectly octahedral [IO6]5– unit reported. The compounds of the ortho‐periodates are stable up to 800 °C. Spectroscopic measurements as well as DFT calculations show a reasonable agreement between calculated and observed IR‐ and Raman‐active vibrations.  相似文献   

9.
CaCeN2 and SrCeN2 were prepared by reactions of Li2CeN2 with Ca3N2 or Sr2N in a nitrogen atmosphere at 1020 K. According to measurements of the magnetic susceptibilities both compounds contain CeIV. The crystal structures were determined by full‐profile Rietveld refinements of the X‐ray powder diffraction patterns. CaCeN2 crystallizes in a rocksalt‐type structure with disordered Ca and Ce (space group Fmm, a = 499.21(1) pm, Rprofile = 0.061, RBragg = 0.034). The low temperature modification of SrCeN2 crystallizes in the α‐NaFeO2 type structure (space group Rm, a = 362.18(4) pm, c = 1795.8(2) pm, Rprofile = 0.085, RBragg = 0.031). At elevated temperatures an order‐disorder phase transition leads to HT‐SrCeN2 (space group Fmm, a = 515.01(2) pm, quenched from 1273 K) with a cubic unit cell and complete disorder of Sr and Ce.  相似文献   

10.
Liquid crystals based on substituted 2,5‐diaryl‐1,3,4‐thiadiazole derivatives (1a1f, 3a and 3b) and 1,3,4‐oxadiazole analogues (2a2f, 4a and 4b) were synthesised and characterised by 1H, 13C nuclear magnetic resonance, Fourier transform infrared, mass spectrometry, high‐resolution mass spectrometry techniques and elemental analyses. The X‐ray crystal structure of 1e revealed that it contains tilted lamellar arrangement of molecules in the crystalline solid. The liquid crystal properties have been investigated by polarised‐light optical microscopy, differential scanning calorimetry and in‐situ variable‐temperature X‐ray diffraction. All compounds (except 2e and 2f) exhibited thermotropic liquid crystal behaviours with various mesophases (smectic A and C, nematic N or soft crystal E phases). Notably, the 1,3,4‐thiadiazole derivatives consistently have wider mesomorphic temperature ranges than those of the respective 1,3,4‐oxadiazole analogues. The solutions of all compounds in CH2Cl2 individually displayed one or two absorption bands with λ max values at 297–355 nm and emitted with λ max values at 363–545 nm and quantum yields of 0.12–0.73. Structure–property relationships of these compounds are discussed in the contexts of their molecular structures and weak intermolecular interactions.  相似文献   

11.
New equiatomic stannide CeRuSn was synthesized from the elements by arc‐melting. CeRuSn was investigated by X‐ray powder and single crystal diffraction: C2/m, a = 1156.1(4), b = 475.9(2) and c = 1023.3(4) pm, β = 102.89(3)°, wR2 = 0.0466, 1229 F2 values and 38 variables. CeRuSn adopts a superstructure of the monoclinic CeCoAl type through a doubling of the subcell c axis. In the superstructure two crystallographically independent cerium sites occur. Based on the interatomic distances the two sites can be assigned to trivalent Ce2 and intermediate valent Ce1. This trivalent‐intermediate valent cerium ordering is underlined by magnetic susceptibility measurements χm(T): below 150 K χm, measured with decreasing temperature, follows a Curie‐Weiss law χm = Cm/(T–θp) giving Cm = 0.38 emuK/mol as Curie constant per CeRuSn mol; a value showing that only half of the cerium atoms are trivalent in CeRuSn (Cm = 0.807 emuK/mol for one free Ce3+ ion). A remarkable feature of the CeRuSn structure are the short Ce1–Ru1 (233 pm) and Ce1–Ru2 (246 pm) distances. The crystal chemistry of CeRuSn is discussed on the basis of a group‐subgroup scheme.  相似文献   

12.
Hochtemperatur‐Cs2[PdCl4] — New Results on a “wellknown” Compound Two modifications of Cs2[PdCl4] have been characterized by X‐ray powder and single crystal diffraction, respectively. The crystal structures are described and the group‐subgroup‐relations between these structures are discussed. In addition to the tetragonal (P4/mmm (No. 123), a = 7.4158(8) Å, c = 4.6792(6) Å) and the orthorhombic (Cmcm (No. 63), a = 10.529(1) Å, b = 10.310(1) Å, c = 9.460(1) Å) modification DSC investigations and high‐temperature X‐ray diffraction experiments with synchrotron radiation show the existence of another modification or of yet unknown decomposition products. The phase transformation from the orthorhombic to the tetragonal polymorph is completely finished at 100 °C. The second effect is detected at 319 °C.  相似文献   

13.
A binuclear samarium(III) complex with benzoic acid and 1,10‐phenanthroline, [Sm(BA)3phen]2 was synthesized and characterized by elemental analysis, UV, IR and TG‐DTG techniques. The structure of the title complex was established by single crystal X‐ray diffraction. The crystal is triclinic, space group P1 with a = 10.8216(11) Å, b = 11.9129(13) Å, c = 12.425(2) Å, α = 105.007(2)°, β = 93.652(2)°, γ = 113.2630(10)°, Z = 1, Dc = 1.650 mg·m?3, F(000) = 690. The carboxylate groups are bonded to the samarium ion in three modes: bidentate chelating, bidentate bridging, and tridentate chelating‐bridging. Each Sm3+ ion is coordinated to one bidentate chelating carboxylate group, two bidentate bridging and two tridentate chelating‐bridging carboxylate groups, as well as one 1,10‐phenanthroline molecule, forming a nine‐coordinate metal ion. Based on thermal analysis, the thermal decomposition process of [Sm(BA)3phen]2 has been derived.  相似文献   

14.
由取代苯乙酮出发,经过多步反应,制得2-苯甲酰基-N-苯基-2-(1,2,4-三唑-1-基)硫代乙酰胺 (1) 和2-(4-氯苯甲酰基)-N-苯基-2-(1,2,4-三唑-1-基)硫代乙酰胺 (2), 通过元素分析、核磁共振氢谱、红外光谱和质谱进行表征。并利用单晶X射线衍射法测定化合物1。晶体属单斜晶系, P21/c空间群, a = 0.8806(2) nm, b = 1.2097(2) nm, c = 1.4809(3) nm, β=105.88˚, Z=4, V=1.5173(6) nm3, Dc=1.411 Mg/m3, μ=0.22 mm-1, F(000)=672, R1=0.040. 采用离体平皿法对它们的杀菌活性进行了比较,同时测定了它们的植物生长调节活性。测定结果表明化合物2对黄瓜子叶生根具有较强的促进作用,促进率达131%。  相似文献   

15.
The Ir–NHC complex 6 was successfully synthesized from the reaction of axially chiral binaphthyl dibenzimidazolium salt 5 with [Ir(COD)Cl]2 (COD = 1,5‐cyclooctadiene) in tetrahydrofuran in the presence of KOtBu base under reflux. Its unique crystal structure is unambiguously disclosed by X‐ray diffraction. Complex 6 is orthorhombic, with space group P212121, unit cell dimensions a = 12.1406(16) Å, b = 19.110(3) Å, c = 20.312(3) Å, α = β = γ = 90° and volume 4712.6(11) Å3, Z = 4, Dcalc = 1.930 Mg m?3. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Ni(NH3)Cl2 and Ni(NH3)Br2 were prepared by the reaction of Ni(NH3)2X2 with NiX2 at 350 °C in a steel autoclave. The crystal structures were determined by X‐ray powder diffraction using synchrotron radiation and refined by Rietveld methods. Ni(NH3)Cl2 and Ni(NH3)Br2 are isotypic and crystallize in the space group I2/m with Z = 8 and for Ni(NH3)Cl2: a = 14.8976(3) Å, b = 3.56251(6) Å, c = 13.9229(3) Å, β = 106.301(1)°; Ni(NH3)Br2a = 15.5764(1) Å, b = 3.74346(3) Å, c = 14.4224(1) Å, β = 105.894(1)°. The crystal structures are built up by two crystallographically distinct but chemically mostly equivalent polymeric octahedra double chains [NiX3/3X2/2(NH3)] (X = Cl, Br) running along the short b‐axis. The octahedra NiX5NH3 share common edges therein. The crystal structures of the ammines Ni(NH3)mX2 with m = 1, 2, 6 can be derived from that of the halides NiX2 (X = Cl, Br) by successive fragmentation of its CdCl2 like layers by NH3.  相似文献   

17.
The mixed‐valent oxotantalate Eu1.83Ta15O32 was prepared from a compressed mixture of Ta2O5 and the metals in a sealed Ta ampoule at 1400 °C. The crystal structure was determined by means of single crystal X‐ray diffraction: space group R3¯, a = 777.2(6) pm and c = 3523.5(3) pm, Z = 3, 984 symmetrically independent reflections, 83 variables, RF = 0.027 for I > 2σ (I). The structure is isotypic to Ba2Nb15O32. The salient feature is a [Ta(+8/3)6O12iO6a] cluster consisting of an octahedral Ta6 core bonded to 12 edge‐bridging inner and six outer oxygen atoms. The clusters are arranged to slabs which are sandwiched by layers of [Ta(+5)3O13] triple octahedra. Additional Ta(+5) and Eu(+2) atoms provide the cohesion of these structural units. Twelve‐fold coordinated Eu(+2) atoms are situated on a triply degenerate position 33 pm displaced from the threefold axis of symmetry. A depletion of the Eu(+2) site from 6 to 5.5 atoms per unit cell reduces the number of electrons available for Ta‐Ta bonding from 15 to 14.67 electrons per cluster. Between 125 and 320 K Eu1.83Ta15O32 is semi‐conducting with a band gap of 0.23 eV. The course of the magnetization is consistently described with the Brillouin function in terms of a Mmol/(NAμB) versus B/T plot in the temperature range 5 K — 320 K and at magnetic flux densities 0.1 T — 5 T. At moderate flux densities (< 1 T) the magnetic moment agrees fairly well with the expected value of 7.94 μB for free Eu (2+) ions with 4f7 configuration in 8S7/2 ground state. Below 5 K, anisotropic magnetization measurements at flux densities B < 1 T point to an onset of an antiferromagnetic ordering of Eu spins within the layers and an incipient ferromagnetic ordering perpendicular to the layers.  相似文献   

18.
A new organic‐templated aluminogermanate [C4H12N][AlGe3O8] ( 1 ) has been prepared under solvothermal conditions by using 2‐propanol as solvent. The structure of the title compound was characterized by IR spectroscopic, elemental analysis, TG, single‐crystal X‐ray diffraction and powder X‐ray diffraction. Compound 1 crystallizes in the tetragonal space group I41/a, a = b = 10.7754(8) Å, c = 9.9116(14) Å, V = 1150.8(2) Å3, Z = 4. The structure of the title compound shows eight‐membered ring channels along a and b axes with a typical GIS topology, and – most importantly – the structure of the inorganic framework is retained when the organic amine is removed by calcination.  相似文献   

19.
Synthesis and Characterization of Sodium Cyanamide The synthesis of Na2CN2 was carried out by reaction of sodium amide with sodium hydrogen cyanamide at 200 °C, in vacuum. Single crystals were obtained while heating the product (500 °C, 8 days) in silver crucibles. The title compound was characterised by single crystal X‐ray diffraction and IR‐spectroscopy (C2/m; Z = 2, a = 5.0456(3), b = 5.0010(3), c = 5.5359(3) Å; β = 110.078(5)°; R1 = 3.18%, wR2 = 6.35%, GOF = 1.078). The CN22– units are linear exhibiting a C–N bond length of 1.236(1) Å, while sodium is coordinated by five nitrogen atoms forming a square pyramid. The structural relationships to aristotypic Na2HgO2 are pointed out.  相似文献   

20.
The title compound, rac‐6,13‐dihydro‐6,13‐methanopentacene ( 1 ), has been synthesized and characterized by elemental analysis, FT‐IR, 1H NMR, UV‐Vis, HRMS spectra, cyclic voltammetry and single‐crystal X‐ray diffraction. The crystal belongs to orthorhombic, space group P212121, with Z = 4 and cell dimensions a = 6.0185(4), b = 8.1914(6), c = 31.4080(19) Å. In the crystal structure, two types of intermolecular C–H···π hydrogen bonds are observed, and further stabilize the crystal structure. Its photophysical and electrochemical properties and complementary density functional theory (DFT) calculations are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号