首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four members of the even-even nylon 2 Y series, for Y = 6, 8, 10, and 12, have been crystallized in the form of chain-folded lamellar single crystals from 1,4-butanediol and studied by transmission electron microscopy (imaging and diffraction), x-ray diffraction, and thermal analysis. The structures of these 2 Y nylons are different from those of nylon 6 6 and many other even-even nylons. At room temperature, two strong diffraction signals are observed at spacings 0.42 and 0.39 nm, respectively; these values differ from the 0.44 and 0.37 nm diffraction signals observed for nylon 6 6 and most even-even nylons at ambient temperature. Detailed analyses of the diffraction patterns show that all these 2 Y nylons have triclinic unit cells. The diamine alkane segments of 2 Y nylons are too short to sustain chain folds; thus, the chain folds must be in the diacid alkane segments in all cases. On heating the crystals from room temperature to the melt, the triclinic structures transform into pseudohexagonal structures and the two diffraction signals meet at the Brill transition temperature which occurs significantly below the melting point. The room temperature structures of these 2 Y nylons are similar to the unit cell of nylon 6 6 at elevated temperature, but below its Brill temperature. The room temperature structures and behavior on heating of the nylon 2 Y family is noticeably different from that of the even-even nylon X 4 family, although the only difference between these families of polyamides is the relative disposition of the amide groups within the chains. The results show that in order to understand the structure, behavior and properties of crystalline nylons, especially as a function of temperature, the detailed stereochemistry needs to be taken into account. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 675–688, 1997  相似文献   

2.
The crystalline transition behaviors under different crystalline conditions of newly synthesized long alkane nylon 12 20 and nylon 10 20 are studied by wide-angle X-ray diffraction (WAXD) and real time Fourier transform infrared spectroscopy (FT-IR). The results show that their crystalline transition behaviors under WAXD were, to a large extend, related to the condition under which the crystals were prepared. The dilute solution-grown lamellar crystals of nylons 12 20 and 10 20 did not show distinct Brill transition behaviors before melting. Unlike the lamellar crystals of many other even-even nylons which display two crystal signals until melting temperature (TM), they presented a broad amorphous-like signal when the temperature increased to around 10 °C below TM. However, the post-annealing samples of nylons 12 20 and 10 20 displayed Brill transition at 155 and 157 °C, respectively, and the solution casting samples of nylons 12 20 and 10 20 at 110 and 135 °C, respectively. Furthermore, the IR spectra of nylons 12 20 and 10 20 displayed an interesting phenomenon: the intensity of the peak at 942 cm−1 declined on heating and finally disappeared around Brill temperature (TB), instead of TM as is in usual nylons. This suggests that the long alkane segments, introduced by 18-octadecanedicarboxylic acid, may undergo a local melting at TB.  相似文献   

3.
Structural transitions of nylons 8 9 and 12 9 heating and cooling processes were investigated using calorimetric, spectroscopic during and real time X‐ray diffraction data. These even‐odd nylons had three polymorphic forms related to structures where hydrogen bonds were established in two planar directions. Heating processes showed a first structural transition at low temperature where the two strong reflections related to the packing mode of the low temperature structure (form I) disappeared instead of moving together and merging into a single reflection, as observed for conventional even‐even nylons. The high temperature structure corresponded to a typical pseudohexagonal packing (form III) attained after the named Brill transition temperature. Structural transitions were not completely reversible since an intermediate structure (form II) became clearly predominant at room temperature in subsequent cooling processes. A single spherulitic morphology with negative birefringence and a flat‐on edge‐on lamellar disposition was obtained when the two studied polyamides crystallized from the melt state. Kinetic analyses indicated that both nylons crystallized according to a single regime and a thermal nucleation. Results also pointed out a secondary nucleation constant for nylon 12 9 higher than that for nylon 8 9, suggesting greater difficulty in crystallizing when the amide content decreased. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2494–2506  相似文献   

4.
Nylon 6 9 has been shown to have structures with interchain hydrogen bonds in both two and in three directions. Chain-folded lamellar crystals were studied using transmission electron microscopy and sedimented crystal mats and uniaxially oriented fibers studied by X-ray diffraction. The principal room-temperature structure shows the two characteristic (interchain) diffraction signals at spacings of 0.43 and 0.38 nm, typical of α-phase nylons; however, nylon 6 9 is unable to form the α-phase hydrogen-bonded sheets without serious distortion of the all-trans polymeric backbone. Our structure has c and c* noncoincident and two directions of hydrogen bonding. Optimum hydrogen bonding can only occur if consecutive pairs of amide units alternate between two crystallographic planes. The salient features of our model offer a possible universal solution for the crystalline state of all odd–even nylons. The nylon 6 9 room-temperature structure has a C-centered monoclinic unit cell (β = 108°) with the hydrogen bonds along the C-face diagonals; this structure bears a similarity to that recently proposed for nylons 6 5 and X3. On heating nylon 6 9 lamellar crystals and fibers, the two characteristic diffraction signals converge and meet at 0.42 nm at the Brill temperature, TB · TB for nylon 6 9 lamellar crystals is slightly below the melting point (Tm), whereas TB for nylon 6 9 fibers is ≅ 100°C below Tm. Above TB, nylon 6 9 has a hexagonal unit cell; the alkane segments exist in a mobile phase and equivalent hydrogen bonds populate the three principal (hexagonal) directions. A structure with perturbed hexagonal symmetry, which bears a resemblance to the reported γ-phase for nylons, can be obtained by quenching from the crystalline growth phase (above TB) to room temperature. We propose that this structure is a “quenched-in” perturbed form of the nylon 6 9 high-temperature hexagonal phase and has interchain hydrogen bonds in all three principal crystallographic directions. In this respect it differs importantly from the γ-phase models. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1153–1165, 1998  相似文献   

5.
The knowledge on linear aliphatic polyurethanes n-PUR has increased significantly due to a series of works made in these last years and published in recent literature. An overview of 12-polyurethane (12-PUR) embracing its synthesis, thermal properties, crystal structure and crystallization is given in this paper. The purpose is to provide a representative example able to reflect comprehensively the state of the art reached for the whole family. The synthesis of 12-PUR was accomplished in good yield and with acceptable molecular weight from 12-amino-1-dodecanol by applying a two-step method without isolation of the isocyanate alcohol precursor. 12-PUR is a semicrystalline polymer with an equilibrium melting temperature of 157 °C. It adopts a layered crystal structure similar to the α-form of nylons with chains in fully-extended conformation and arranged in hydrogen-bonded sheets in the antiparallel mode. This structure is thermally stable up to melting and is unable to undergo Brill transition. 12-PUR crystallized from dilute solution affording well-shaped lamellar crystals with a thickness of 8-9 nm and from the melt yielding either banded or fibrillar spherulitic textures displaying negative birefringence. Isothermal crystallization of 12-PUR from the melt took place with heterogeneous nucleation, while both crystallization rate and the finally attained crystallinity degree were highly depending on crystallization temperature.  相似文献   

6.
Two complexes [MnIII4(naphthsao)4(naphthsaoH)4] ( 1 ) and [FeIII6O2(naphthsao)4(O2CPh)6] ( 2 ) [naphthsao = 1‐(1‐hydroxy‐naphthalen‐2‐yl)ethanone oxime] were obtained through the reactions of naphthsao ligand and MnCl2 · 4H2O or FeCl3 · 6H2O in the presence of triethylamine (Et3N). Their structures were determined by X‐ray single crystal diffraction, elemental analysis, and IR spectra. Complex 1 displays 12‐MC‐4 metallacrown structural type with cube‐like configuration and 2 shows an offset stacked 10‐MC‐3 structural type with the ring connectivity containing Fe–O–C–O–Fe–O–N–Fe–O–N. Magnetic susceptibility measurement reveals the ferromagnetic interactions and field‐induced slow relaxation of the magnetization for 1 , whereas out‐of‐phase signal is not observed for 2 .  相似文献   

7.
The crystal structures of nylons X 11 under different conditions (X = 2, 4, 6, 8, 10, and 12) were investigated by wide‐angle X‐ray diffraction (WAXD) and electron diffraction (ED). Both the solution‐ and melt‐crystallized samples of nylon 2 11 possess the hexagonal lattice (named γ‐form). Nylons 4 11 and 6 11 exhibit the monoclinic unit cell (termed as α‐like form) for both samples characteristic of two strong diffractions at 0.44 and 0.38 nm. For nylons 8 11, 10 11, and 12 11, the α‐like form are obtained for the solution‐crystallized samples while the β‐like ones are obtained in the case of the melt‐crystallized ones, with typical strong diffractions at 0.42 and 0.40 nm. The quenched nylon 12 11 samples annealing at different temperatures were also studied in this work to illustrate the various crystal forms obtained under different conditions. During the heating process, the α‐like forms of the solution‐crystallized samples for nylons 8 11, 10 11, and 12 11 transform into the high‐temperature hexagonal phases prior to melting, while those of nylons 4 11 and 6 11 did not show such transformations before melting. Variable‐temperature Fourier transform infrared spectroscopy was applied to investigate the crystalline transition phenomena and illustrate their essential features in the molecular level. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2048–2060, 2005  相似文献   

8.
Structural studies and morphological features of a new family of linear, aliphatic even–even, X 34‐nylons, with X = 2, 4, 6, 8, 10, and 12, are investigated with X‐ray diffraction and electron microscopy. Solution‐grown crystals were obtained by isothermal crystallization from N,N‐dimethylformamide solutions. The thickness of lamellar‐like crystals was orders of magnitude less than the chain lengths of the polymer samples used, implying that the chains fold to form chain‐folded lamellae. The results bear a close resemblance, with the noticeable exception of 2 34‐nylon, to those reported for nylon 6 6 and other even–even nylon chain‐folded lamellar crystals. The basic structure of the straight‐stem lamellar core is similar to that of the classic nylon 6 6 triclinic α structure, and the chains tilt ≈42° relative to the lamellar normal. In the case of 2 34‐nylon, the structure resembles the 2 Y nylon series, and the chain tilt angle reduces to 36.6°. These combined results suggest that, even with a relatively low frequency of amide units along the backbone of these molecules, hydrogen bonding is still the dominant element in controlling the behavior, structure, and properties of these polymers. In addition, gels were prepared in concentrated sulfuric acid, and gel‐spun fibers were studied using X‐ray diffraction. The data are interpreted in terms of a modified nylon triclinic α structure that bears a resemblance to the structure of even–even nylons at elevated temperatures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2685–2692, 2002  相似文献   

9.
Zn8P12N24O2 – a Nitridophosphate Oxide with Sodalite Structure The reaction between zinc metal and phosphorus nitride imide PN(NH) was investigated. Surprisingly, no Zn6P12N24 was formed as assumed in former investigations but phase pure Zn8[P12N24]O2 ( (Nr. 217), a = 8.2422(2) Å; Z = 1) was obtained due to contamination by a small amount of oxygen. The existence of Zn8[P12N24]O2 was formerly supposed, but neither its crystal structure nor its exact composition have been unequivocally reported so far. The stoichiometric formula was deducted from elemental analyses, XANES spectroscopy at the phosphorus K‐threshold and IR‐spectroscopy using the crystallographic results of electron diffraction, X‐ray powder diffraction and solid‐state NMR spectroscopy. Zn8[P12N24]O2 adopts the sodalite structure type and is thus isotypic with Zn8[P12N24]X2 with X = S, Se, Te and Zn8[B12O24]O2.  相似文献   

10.
A series of 2‐amino‐7‐methoxy‐4‐aryl‐4H‐chromene‐3‐carbonitrile compounds 2 were obtained by condensation of 3‐methoxyphenol with β‐dicyanostyrenes 1 in absolute ethanol containing piperidine. The intermediate enamines 3 were prepared by compounds 2 with 5‐substituted‐1,3‐cyclohexanedione using p‐toluenesuflonic acid (TsOH) as catalyst. The title compounds 11‐amino‐3‐methoxy‐8‐substituted‐12‐aryl‐8,9‐dihydro‐7H‐chromeno[2,3‐b]quinolin‐10(12H)‐one 4 were synthesized by cyclization of the intermediate enamines 3 in THF with K2CO3 /Cu2Cl2 as catalyst. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H NMR spectra. The crystal structure of compound 4i was determined by single‐crystal X‐ray diffraction analysis.  相似文献   

11.
Dodecahydro‐ closo ‐dodecaborates of the Heavy Alkaline‐Earth Metals from Aqueous Solution: Ca(H2O)7[B12H12] · H2O, Sr(H2O)8[B12H12], and Ba(H2O)6[B12H12] The crystalline hydrates of the heavy alkaline earth metal dodecahydro‐closo‐dodecaborates (M[B12H12] · n H2O, n = 6–8; M = Ca, Sr, Ba) are easily accessible by reaction of an aqueous (H3O)2[B12H12] solution with an alkaline earth metal carbonate (MCO3). By isothermic evaporation of the respective aqueous solution we obtained colourless single crystals which are characterized by X‐ray diffraction at room temperature. The three compounds Ca(H2O)7[B12H12] · H2O (orthorhombic, P212121; a = 1161.19(7), b = 1229.63(8), c = 1232.24(8) pm; Z = 4), Sr(H2O)8[B12H12] (trigonal, R3; a = 1012.71(6), c = 1462.94(9) pm; Z = 3) and Ba(H2O)6[B12H12] (orthorhombic, Cmcm; a = 1189.26(7) pm, b = 919.23(5) pm, c = 1403.54(9) pm; Z = 4) are neither formula‐equal nor isostructural. The structure of Sr(H2O)8[B12H12] is best described as a NaCl‐type arrangement, Ba(H2O)6[B12H12] rather forms a layer‐like and Ca(H2O)7[B12H12] · H2O a channel‐like structure. In first sphere the alkaline earth metal cations Ca2+ and Sr2+ are coordinated by just seven and eight oxygen atoms from the surrounding water molecules, respectively. A direct coordinative influence of the quasi‐icosahedral [B12H12]2– cluster anions becomes noticeable only for the Ba2+ cations (CN = 12) in Ba(H2O)6[B12H12]. The dehydratation of the alkaline earth metal dodecahydro‐closo‐dodecaborate hydrates has been shown to take place in several steps. Thermal treatment leads to the anhydrous compounds Ca[B12H12], Sr[B12H12] and Ba[B12H12] at 224, 164 and 116 °C, respectively.  相似文献   

12.
Variable temperature X‐ray diffraction (XRD) and real time Fourier transform infrared spectroscopy (FT‐IR) were used to study the Brill transition of well crystallized Nylon 10 12 samples. The experimental data demonstrate that Nylon 10 12 undergoes Brill transition at about 120°C. IR spectra also show that a sequence of bands at 897 cm–1, 986 cm–1, 1 165 cm–1, 1 189 cm–1, 1 224 cm–1 and 1 338 cm–1 which are “α‐bands” disappear abruptly during Brill transition.  相似文献   

13.
The new zincophosphate of chemical formula [C6H10N2][ZnP2O8H2] · 0.6H2O was hydrothermally synthesized with p‐phenylenediamine as structure‐directing agent. The title compound crystallizes in the trigonal symmetry (proposed space group P3m1), where inorganic zincophosphate chains form layers due to the half occupancy of the unique crystallographic zinc site. The layers are separated from each other by p‐phenylenediammonium dications with hydrogen bonding scheme involving the ammonium protons that reveals a pillar‐like 3D structure aspect. The compound was characterized by powder X‐ray diffraction, multinuclear solid‐state NMR, scanning electron microscopy, chemical analysis, and thermogravimetric analysis.  相似文献   

14.
The C3‐symmetric chiral propylated host‐type ligands (±)‐tris(isonicotinoyl)‐tris(propyl)‐cyclotricatechylene ( L1 ) and (±)‐tris(4‐pyridyl‐4‐benzoxy)‐tris(propyl)‐cyclotricatechylene ( L2 ) self‐assemble with PdII into [Pd6L8]12+ metallo‐cages that resemble a stella octangula. The self‐assembly of the [Pd6( L1 )8]12+ cage is solvent‐dependent; broad NMR resonances and a disordered crystal structure indicate no chiral self‐sorting of the ligand enantiomers in DMSO solution, but sharp NMR resonances occur in MeCN or MeNO2. The [Pd6( L1 )8]12+ cage is observed to be less favourable in the presence of additional ligand, than is its counterpart, where L=(±)‐tris(isonicotinoyl)cyclotriguaiacylene ( L1 a ). The stoichiometry of reactant mixtures and chemical triggers can be used to control formation of mixtures of homoleptic or heteroleptic [Pd6L8]12+ metallo‐cages where L= L1 and L1 a .  相似文献   

15.
Three kinds of nylon 10 14 crystals with different perfections were prepared under various crystallization conditions. The Brill transition behavior of these nylon 10 14 crystals was investigated by variable-temperature X-ray diffraction. It was found that the crystallization conditions influence the Brill transition temperature greatly. The Brill transition temperature of the lamellar crystals grown from dilute solution is so high that no Brill transition temperature can be observed before melting. However, for crystals postannealed at 125 °C, the Brill transition temperature is as low as 130 °C. The results show that the Brill transition behavior of nylons is strongly dependent on the crystallization conditions, for example, the perfections of the crystals.  相似文献   

16.
Two fluorine‐substituted 1,4,5,6‐tetrahydrobenzo[h]quinazolin‐2‐amine (BQA) derivatives, namely 2‐amino‐4‐(2‐fluorophenyl)‐9‐methoxy‐1,4,5,6‐tetrahydrobenzo[h]quinazolin‐3‐ium chloride, ( 8 ), and 2‐amino‐4‐(4‐fluorophenyl)‐9‐methoxy‐1,4,5,6‐tetrahydrobenzo[h]quinazolin‐3‐ium chloride, ( 9 ), both C19H19FN3O+·Cl?, were generated by Michael addition reactions between guanidine hydrochloride and the α,β‐unsaturated ketones (E)‐2‐(2‐fluorobenzylidene)‐7‐methoxy‐3,4‐dihydronaphthalen‐1(2H)‐one, C18H15FO2, ( 6 ), and (E)‐2‐(4‐fluorobenzylidene)‐7‐methoxy‐3,4‐dihydronaphthalen‐1(2H)‐one, ( 7 ). Because both sides of α,β‐unsaturated ketones ( 6 ) or ( 7 ) can be attacked by guanidine, we obtained a pair of isomers in ( 8 ) and ( 9 ). Single‐crystal X‐ray diffraction indicates that each isomer has a chiral C atom and both ( 8 ) and ( 9 ) crystallize in the achiral space group P21/c. The chloride ion, as a hydrogen‐bond acceptor, plays an important role in the formation of multiple hydrogen bonds. Thus, adjacent molecules are connected through intermolecular hydrogen bonds to generate a banded structure. Furthermore, these bands are linked into an interesting 3D network via hydrogen bonds and π–π interactions. Fortunately, the solubilities of ( 8 ) and ( 9 ) were distinctly improved and can exceed 50 mg ml?1 in water or PBS buffer system (pH 7.4) at room temperature. In addition, the results of an investigation of anti‐inflammatory activity show that ( 8 ) and ( 9 ), with o‐ and p‐fluoro substituents, respectively, display more potential for inhibitory effects on LPS‐induced NO secretion than starting ketones ( 6 ) and ( 7 ).  相似文献   

17.
Synthesis, Crystal Structure and Solid‐State NMR Spectroscopic Investigation of the Oxonitridosilicate BaSi6N8O The phase‐pure oxonitridosilicate BaSi6N8O has been synthesized starting from BaCO3 and silicon diimide Si(NH)2 in a radiofrequency furnace at temperatures below 1630 °C as a coarsely crystalline colorless material. The structure has been determined by single‐crystal X‐ray diffraction analysis (BaSi6N8O, space group Imm2 (no. 44), a = 810.5(2), b = 967.8(2), c = 483.7(1) pm, V = 379.4(2)·106 pm3, Z = 2, R1 = 0.014, 618 independent reflections, 44 parameters). The oxonitridosilicate comprises a three‐dimensional network structure of corner sharing SiN4 and SiON3 tetrahedra with Ba2+ located in the resulting voids. BaSi6N8O is isostructural with the oxonitridoalumosilicate (sialon) Sr2AlxSi12?xN16?xO2+x (x ≈ 2) that previously has been described in the literature. Furthermore, the anionic network of BaSi6N8O derives from that of the homeotypic reduced nitridosilicate SrSi6N8 by a topotactic insertion of oxygen into the Si–Si single bonds. In the 29Si MAS‐NMR spectrum two sharp isotropic signals have been observed at ?54.0 and ?56.3 ppm, respectively. With respect to their observed intensity ratio of 1 : 2.1(1) these two signals have to be attributed to the central atoms of SiON3 and SiN4 tetrahedra, respectively, which is in accordance with the X‐ray crystal structure determination (Si at Wyckoff positions 4d (SiON3) and 8e (SiN4)).  相似文献   

18.
A new transition‐metal‐containing Zintl phase, Eu10Cd6Bi12, was synthesized by combining the elements in excess molten Cd. Single‐crystal X‐ray diffraction studies indicated that this compound crystallizes in the orthorhombic space group Cmmm (No. 65) with a=7.840(2), b=24.060(7), and c=4.7809(14) Å. The crystal structure of Eu10Cd6Bi12 can be viewed as a stacking of a series of [Cd6Bi12] double layers, which are arranged alternately along the b axial direction. The layers are composed of corner‐ and edge‐shared CdBi4 tetrahedra, a common feature in the crystal chemistry of many transition‐metal Zintl phases. Electronic‐band‐structure calculations confirm the closed‐shell configuration of all constituent elements and corroborate the electron count inferred by the Zintl formalism, that is, [Eu2+]10[Cd2+]6[Bi3?]8[Bi2?]4. Magnetic‐susceptibility measurements confirm the divalency of europium and show the existence of a long‐range antiferromagnetic order of the Eu spins below 12.3 K.  相似文献   

19.
薛思佳  卞王东  柴安  吁松瑞 《中国化学》2008,26(8):1501-1505
本文首次合成标题化合物N-(4-甲基苯甲酰氨基)-N’-[5-(2-三氟甲基苯基)-2-呋喃甲酰硫脲。化合物(C21H16F3N3O3S, Mr = 447.43)单晶经测定为单斜晶体,空间群为P -1。在晶体中,存在一些分子内和分子间的相互作用,分子间还有C—H···π 的相互作用,这可能导致晶体更稳定的原因。目标产物的结构经IR, H NMR和元素分析测定确证。初步生物活性测试表明,部分化合物对棉花枯萎病、黄瓜灰霉病、苹果轮纹病和棉花炭疽病有较好的选择性杀菌活性;部分目标化合物有较好的除草活性。  相似文献   

20.
A novel two‐dimensional network dibenzo‐18‐crown‐6 (DB18‐C6) complex: [Na (DB18‐C‐6) (H2O)2] [Na (DB18‐C‐6) (SCN)2] has been isolated and characterized by elemental, IR and X‐ray diffraction analysis. The crystal structure belongs to monoclinic, space group P21/c with cell dimensions a = 1.06178(7), b = 1.40243(8), c = 3.03496(19) nm, β = 90.4220(10)°, V = 4.5292(5) nm3, Z=4, Dcalcd =1.351 g/ cm3, F(000) = 1936, R1 = 0.0369, wR2 = 0.0821. The most interesting feature in this structure is that complex cation and complex anion form a two‐dimensional network via τ‐τ stacking interactions, hydrogen bonds and electrostatic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号