首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lamellar morphology in banded spherulites of poly(ε‐caprolactone) blended with an amorphous polymer, poly(vinyl butyral), was investigated by three‐dimensional transmission electron tomography. It showed a local lamellar twist on a smaller scale than the band spacing by 2 orders of magnitude. It also indicated wavy lamellae and frequent variation in the direction of the lamellar plane. All these results indicated an S‐profiled lamellar structure; that is, the cross section perpendicular to the lamellar growth direction was S‐shaped. S‐profiled lamellae show these structures when they are sliced at a certain angle to the lamellar surface direction. Lamellar branching was also observed, but no screw dislocations that led to the formation of extinction rings were observed in this work. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1122–1125, 2007  相似文献   

2.
Lamellar single crystals of poly(butylene succinate) (PBS) with novel morphologies were prepared from a chloroform/methanol solution by self‐seeding methods. Crystal structures and morphologies were investigated by means of atomic force microscopy (AFM). Lath‐shaped crystal and hexagonal‐shaped crystals coexist in one PBS single crystal and this has a lamellar thickness of around 5–6 nm as determined by AFM. The thickening of lamellae from 5–6 to 7–9 nm occurred during heating from 41 to 84 °C. In situ temperature‐controlled AFM observations demonstrated that the lath‐shaped crystal sections melted first and then the hexagonal sections while the edge of the single crystals remained regular during annealing. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1492–1496, 2009  相似文献   

3.
In this article, the polydispersity of the ethylene sequence length (ESL) in ethylene/α‐olefin copolymers was studied by atomic force microscopy (AFM) and the thermal‐fractionation technique. The crystal morphology observation by AFM showed that morphology changed gradually with decreasing average ESL from complete lamellae over shorter and more curved lamellae to a granular‐like morphology, and the mixed morphology was observed after stepwise crystallization from phase‐separated melt. This result indicated that the ethylene sequence with different lengths crystallized into a crystalline phase with a different size and stability at the copolymer systems. The thermal‐fractionation technique was used to characterize the polydispersity of ESL. Three of the following statistical terms were introduced to describe the distribution of ESL and the lamellar thickness: the arithmetic mean L?n, the weight mean L?w, and the broadness index I = L?w/L?n. It was concluded that the polydispersity of ESL could be quantitatively characterized by the thermal‐fractionation technique. The effects of temperature range, temperature‐dependent specific heat capacity Cp of copolymer, and the molecular weight on the results of thermal fractionation were discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 813–821, 2002  相似文献   

4.
Changes in the lamellar morphology that occurred during the quiescent isothermal crystallization of absorbable poly(p‐dioxanone) (PDS) and PDS/poly(glycolide) block copolymer were studied by synchrotron small‐angle X‐ray scattering. Important morphological parameters such as the lamellar long period, the thicknesses of the crystal and amorphous phases, and the scattering invariant were estimated as a function of time, and trends observed over a wide range of experimental conditions are discussed. Thicker but more perfect lamellae were detected at higher crystallization temperatures. The breadth of the normalized semilog Lorentz‐corrected intensity peak systematically decreased with increasing temperature. In addition, the values of the crystallization half‐time and the Avrami exponent (n = 2.5), determined from the real‐time changes in the lamellar development, showed superb agreement with the bulk crystallinity data generated from other experimental techniques, such as calorimetry and dielectric relaxation spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 153–167, 2001  相似文献   

5.
The atomic force microscope (AFM) has been used to investigate morphological development during the crystallization of poly(ethylene oxide) (PEO) from the melt. PEOs with molecular weights of 1 × 105 and 7 × 106 were used. Height and amplitude images were recorded, using the tapping mode. For both polymers, the mode of spherulite development varied with the velocity of the growth front. For slow growth velocities, the growth of the crystallites was linear, with growth initially occurring by single lamellae, later developing into growth arms by screw dislocation spawning of crystallites. At intermediate growth velocities, stacks of lamellae develop rapidly. The splaying apart of adjacent crystals and growth arms is abundant. The operation of growth spirals was observed directly in this growth velocity range. The crystals formed by the giant screw dislocations diverge immediately from the original growth direction, providing a source of interlamellar splaying. At low and intermediate velocities, the front propagates by the advance of primary growth arms, with the regions between the arms filled in by arms growing behind the primary front. At the highest velocity observed here, the formation of lamellar bundles and immediate splaying results in recognizable spherulites developing at the earliest stages of crystallization. The change from linear growth to splaying and nonlinear growth are qualitatively explained in terms of driving force, elastic resistance and the presence of compositional and/or elastic fields in the melt. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2311–2325, 1998  相似文献   

6.
The lamellar structures in uniaxially drawn films of miscible crystalline/crystalline polymer blends of poly(vinylidene fluoride) (PVDF) and poly(3‐hydroxybutyrate) (PHB) were investigated by static and time‐resolved measurements of small‐angle X‐ray scattering (SAXS). Intense SAXS in the low angle range of the meridian was interpreted as originating from the interlamellar inclusion structure, in which the PHB chains were included between the lamellae of PVDF. The interlamellar inclusion was induced for the uniaxially drawn films of PVDF/PHB = 30/70 blend with a draw ratio (DR) of 2.8–4.5, whereas the lamellae of the PVDF and PHB components were mutually excluded from each other forming their own lamellar stacks (interlamellar exclusion) in the blend with a higher DR (5.0–5.7). When the highly drawn film with the interlamellar exclusion structure was heat treated at 154–165 °C, the interlamellar inclusion structure was partially induced by the heat treatment. The time‐resolved SAXS measurements indicated that the interlamellar inclusion structure was developed by melting and recrystallization of PVDF during the heat treatment. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 381–392, 2009  相似文献   

7.
A series of diblock copolymers of n‐pentyl methacrylate and methyl methacrylate (PPMA/PMMA BCP) with one or two terminal functional groups was prepared by sequential anionic polymerization of PMA and MMA using an allyl‐functionalized initiator and/or and end‐capping with allyl bromide. Allyl functional groups were successfully converted into OH groups by hydroboration. The morphology in bulk was examined by temperature‐dependent small‐angle X‐ray measurements (T‐SAXS) and transmission electron microscopy (TEM) showing that functional groups induced a weak change in d‐spacings L0 as well as in the thermal expansion behavior. T‐SAXS proved that the lamellar morphologies were stable over multiple heating/cooling cycles without order‐disorder transition (ODT) until 300 °C. While non‐functionalized BCP formed parallel lamellae morphologies, additional OH‐termination at the PMMA block forced in very thin films (ratio between film thickness and lamellar d‐spacing below 1) the generation of perpendicular lamellae morphology through the whole film thickness, as shown by Grazing‐incidence small‐angle X‐ray scattering experiments (GISAXS) measurements. Functionalized BCP were successfully used in thin films as templates for silica nanoparticles in an in‐situ sol–gel process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
The plasticity of semicrystalline polymers is analyzed in the framework of Young's dislocation model under the assumption of nucleation of screw dislocations from the lateral surface of the crystalline lamellae. It is proposed that the driving force for the nucleation and propagation across the crystal width of these screw dislocations relies on chain twist defects that migrate along the chains stems and allow a step‐by‐step translation of the stems through the crystal thickness. Such defects are identified as thermally activated conformational defects responsible for the so‐called crystalline relaxation. Dislocation kinetic equations are derived. Plastic flow rates attainable by dislocation motion in polyethylene and polypropylene are assessed with frequency–temperature data of the crystalline relaxation. Comparisons are made with experimental strain rates that enable homogeneous plastic deformation. In addition to temperature, the crystal lamellar thickness, which is a basic factor of the plastic flow stress in Young's dislocation model, is a major factor in dislocation kinetics through its influence on chain twist activation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 593–601, 2002; DOI 10.1002/polb.10118  相似文献   

9.
The objective of this work was to use both X‐ray and differential scanning calorimetry techniques in a comparative study of the lamellar and crystalline structures of heterogeneous and homogeneous ethylene‐α‐copolymers. The samples differed in the comonomer type (1‐butene, 1‐hexene, 1‐octene, and hexadecene), comonomer content, and catalyst used in the polymerizations. Step crystallizations were performed with differential scanning calorimetry, and the crystallinity and lamellar thicknesses of the different crystal populations were determined. Wide‐angle X‐ray scattering was used to determine crystallinities, average sizes of the crystallites, and dimensions of the orthorhombic unit cell. The average thickness, separation of the lamellae, and volume fractions of the crystalline phase were determined by small‐angle X‐ray scattering (SAXS). The results revealed that at densities below 900 kg/m3, polymers were organized as poorly organized crystal bundles. The lamellar distances were smaller and the lamellar thickness distributions were narrower for the homogeneous ethylene copolymers than for the heterogeneous ones. Step‐crystallization experiments by SAXS demonstrated that the long period increased after annealing. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1860–1875, 2001  相似文献   

10.
Lamellar morphology and thickness of syndiotactic polystyrene (sPS) samples melt‐crystallized at various temperatures were probed using transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS). In addition, the melting temperature and enthalpy of the crystallized samples were characterized with differential scanning calorimetry. Under appropriate thermal treatments, all the samples investigated in this study were crystallized into β′ crystal modification, as revealed by wide‐angle X‐ray diffraction. From the SAXS intensity profiles, a scattering peak (or shoulder) associated with lamellar features as well as the presence of anomalous scattering at the zero‐scattering vector were evidently observed. The peculiar zero‐angle scattering was successfully described by the Debye–Bueche model, and subtraction of its contribution from the raw intensity profiles was carried out to deduce the intensity profile merely associated with the lamellar feature. The lamellar thickness obtained from Lorentz‐corrected intensity profiles in this manner agrees with that measured from the TEM images, provided that the two‐phase model is applied. On the basis of the Gibbs–Thomson equation, the modest estimations of equilibrium melting temperature and the surface free energy of the fold lamellar surface are 292.7 ± 2.7 °C and 20.2 ± 2.6 erg/cm2, respectively, when lamellar thicknesses measured by TEM are applied. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1626–1636, 2002  相似文献   

11.
Structural studies and morphological features of a new family of linear, aliphatic even–even, X 34‐nylons, with X = 2, 4, 6, 8, 10, and 12, are investigated with X‐ray diffraction and electron microscopy. Solution‐grown crystals were obtained by isothermal crystallization from N,N‐dimethylformamide solutions. The thickness of lamellar‐like crystals was orders of magnitude less than the chain lengths of the polymer samples used, implying that the chains fold to form chain‐folded lamellae. The results bear a close resemblance, with the noticeable exception of 2 34‐nylon, to those reported for nylon 6 6 and other even–even nylon chain‐folded lamellar crystals. The basic structure of the straight‐stem lamellar core is similar to that of the classic nylon 6 6 triclinic α structure, and the chains tilt ≈42° relative to the lamellar normal. In the case of 2 34‐nylon, the structure resembles the 2 Y nylon series, and the chain tilt angle reduces to 36.6°. These combined results suggest that, even with a relatively low frequency of amide units along the backbone of these molecules, hydrogen bonding is still the dominant element in controlling the behavior, structure, and properties of these polymers. In addition, gels were prepared in concentrated sulfuric acid, and gel‐spun fibers were studied using X‐ray diffraction. The data are interpreted in terms of a modified nylon triclinic α structure that bears a resemblance to the structure of even–even nylons at elevated temperatures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2685–2692, 2002  相似文献   

12.
A new solvent, dimethylformamide (DMF), and the traditional solvent, 1,4‐butanediol, were used to prepare single crystals of nylon‐10,10 from a dilute solution. The lamellae grown from DMF inhabited a more perfect structure and regular shape than those crystals crystallized from traditional solvents such as 1,4‐butanediol and glycerin. These thin and perfect lamellar crystals demonstrated patterns of variation in spacing different from those of melt‐crystallized spherulites on heating. Specifically, the two main spacings slightly separated rather than continuously approaching each other when the temperature was greater than 180 °C. This is a novel phenomenon observed in nylons. Nevertheless, the usual pattern of change in spacing was observed during the cooling process. These lamellar crystals showed more compact spacing of the (002) and (010/100) planes than spherulites at room temperature. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 729–735, 2001  相似文献   

13.
Poly(ethylene terephthalate) films with oriented lamellar structure were deformed in tensile experiments and investigated in situ using small angle X‐ray scattering. The tensile direction was set parallel, normal and in an angle of 45° relative to the surface normal of the lamellae. Data were interpreted in terms of two‐dimensional autocorrelation functions. The deformation of lattice spacing and lamellar orientation can largely be explained by affine transformations. The sample, where the lamellar surface normal was normal to tensile direction, developed a chequerboard type arrangement of crystalline parts. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 159–169  相似文献   

14.
A new aryl polyester, poly(pentamethylene terephthalate) (PPT) with five methylene groups in the repeat unit, was synthesized. Its multiple‐melting behavior and crystal structure were analyzed with differential scanning calorimetry and wide‐angle X‐ray diffraction. In addition, the spherulitic/lamellar morphology of melt‐crystallized PPT was investigated. Typical Maltese‐cross spherulites (with no rings) were seen in melt‐crystallized PPT at low temperatures (70–90 °C), but ring patterns were seen in PPT crystallized only at temperatures ranging from 100 to 115 °C, whereas rings disappeared with crystallization above 120 °C. The mechanisms of the rings in PPT were explained with several coordinated directional changes (wavy changes, twisting changes, and combinations) in the lamellae during growth. Scanning electron microscopy, in combination with atomic force microscopy, further proved that the ringed spherulites originated from the aggregation of sufficient numbers of edge‐on lamellar crystals; the radial‐growth edge‐on/flat‐on lamellae could be twisted and/or waved to form realistic band patterns. A postulated model properly described a possible origin of the ring bands through combined mechanisms of waving (zigzagging) and twisting (spiraling) of the lamellae during crystallization. Superimposed twisting and/or wavy models during crystallization were examined as examples. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4421–4432, 2004  相似文献   

15.
Small‐angle X‐ray scattering (SAXS), atomic force microscopy (AFM), and other techniques were combined in a study of segmented thermoplastic elastomers (Pebax) containing poly(tetramethylene oxide) soft segments and hard blocks of nylon‐12. AFM was used to provide real‐space resolution of the morphology during tensile elongation and after subsequent relaxation. Nanofibril formation, starting at strains of about 1.5×, was characterized in detail, showing the evolution of the number, orientation, and size of these highly stressed load‐bearing fibrils that dominated the mechanical properties. AFM results were combined with two‐dimensional SAXS data to develop a model considering the breakup of the original ribbonlike nylon‐12 lamellae in combination with progressive reformation and orientation of highly stressed fibrils. The complex changes in the two‐dimensional SAXS images included a distorted arc pattern due to increased spacing of the lamellae in the stretch direction at low strains, with an evolution to completely different patterns dominated mainly by intrafibrillar and interfibrillar scattering contributions. Between stretch ratios of 1.5 and 2.3× original lamellae were progressively broken up, and by 3.2×, all lamellae independent of the initial orientation were broken into smaller crystals with low aspect ratios. The results were combined with differential scanning calorimetry and birefringence data taken on films under strain to obtain insight into the microscopic basis for strain softening and plastic deformation in Pebax and related segmented polymers. Birefringence cycling with strain provided a consistent picture with the other techniques for understanding the redistribution of stress on a nanoscopic scale during deformation and relaxation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1727–1740, 2002  相似文献   

16.
Poly(δ‐valerolactone) (PVL) crystals in the form of chain‐folded lamellae were prepared by isothermal crystallization from a 2‐methylbutane‐2‐ol solution. Wide‐angle and small‐angle X‐ray diffraction data, obtained from PVL lamellae sedimented to form oriented mats, were supplemented with morphological and structural data from electron microscopy, both imaging and diffraction. The diffraction signals index on an orthorhombic unit cell with the parameters a = 0.747 ± 0.002 nm, b = 0.502 ± 0.002 nm, and c (chain axis) = 0.742 ± 0.002 nm. Similar unit cell parameters were obtained from crystals grown from 1‐octanol and also from drawn melt‐pressed films. The evidence supports a model containing two antiparallel chain segments in the unit cell. The c value of 0.742 nm is appropriate for an all‐trans or onefold helical backbone conformation for the straight stems. Possible slight perturbations at the ester units from the all‐trans backbone conformation are discussed. Computerized modeling was used to optimize the adjacent‐reentry folded structure. The setting angles, with respect to the a axis, are ±58° for the corner and center chains. The lamellae are 7.26 ± 0.05 nm thick, and the chains run orthogonal to the lamellar surface. The chains fold in the diagonal (110) and (11¯0) planes in an alternating fashion. The X‐ray diffraction data suggest that a proportion of adjacent paired antiparallel entities, or hairpin units, are c‐axis‐sheared, and a relationship to the results obtained from drawn films is discussed. A brief comparison is also made with related polymer structures. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2622–2634, 2001  相似文献   

17.
Poly‐3‐hydroxy butyrate has been etched and studied under scanning and transmission electron microscopes. It displays three of the following unusual features: (1) spherulites develop in a loose spiral rather than radial structure, which appears to reflect the chiral nature of the polymer; (2) in the banded spherulitic structure, lamellae oriented flat‐on to the surface are etched more deeply in relation to edge‐on lamellae; and (3) material crystallized at high temperature is less resistant to etching than that crystallized at low temperature, whereas the most rapid rate of etching appears to be where growth occurred at an intermediate temperature where the growth rate was at its maximum. The second and third phenomena are contrary to what is found in polymers such as polyethylene and polyethylene terephthalate and are attributed to excess free volume in the material located between the main lamellar bundles. Polyoxymethylene also displays the same unusual relationship of etching rate with crystallization temperature. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 124–133, 2002  相似文献   

18.
The isothermal crystallization and subsequent melting process in semicrystalline poly(4‐methyl‐1‐pentene) were investigated via temperature‐dependent small‐ and wide‐angle X‐ray scattering and Flash DSC techniques. In a phase diagram of inversed crystalline lamellar thickness and temperature, the crystallization and melting lines can be described by two linear dependencies of different slopes and different limiting temperatures at infinite lamellar thickness. Upon subsequent heating, recrystallization lines with different slopes were observed for samples with different lamellar thickness, indicating changes in surface free energy difference between stabilized crystallites and mesomorphic phase. The surface free energy of native crystallites with extended‐chain conformation decreased with increasing lamellar thickness due to a more ordered surface region and less chain ends which changes cooperatively with mesomorphic phase. The surface free energy of stabilized crystallites remained unchanged for all lamellar thickness. Therefore, the recrystallization lines with different slopes are consequences of changes in surface free energy of mesomorphic phase. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 219–224  相似文献   

19.
The effect of liquid–liquid phase separation (LLPS) on the crystallization behavior of poly(ethylene‐ran‐vinyl acetate) with a vinyl acetate content of 9.5 wt % (EVA‐H) in the critical composition of a 35/65 (wt/wt) EVA‐H/paraffin wax blend was investigated by small‐angle light and X‐ray scattering methods and rheometry. This blend exhibited an upper critical solution temperature (UCST) of 98°C, and an LLPS was observed between the UCST and the melting point of 88°C for the EVA‐H in the blend. As the duration time in the LLPS region increased before crystallization at 65°C, both the spherulite size and the crystallization rate of the EVA‐H increased, but the degree of the lamellar ordering in the spherulite and the degree of crystallinity of the EVA‐H in the blend decreased. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 707–715, 2000  相似文献   

20.
We here reported the dual melting behaviors with a large temperature difference more than 50 °C without discernible recrystallization endothermic peak in isomorphous poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (P(HB‐co‐HV)) with a high HV content of 36.2 mol %, and the structure evolution upon heating was monitored by in situ synchrotron wide‐angle X‐ray diffraction/small‐angle X‐ray scattering (WAXD/SAXS) to unveil the essence of such double endothermic phenomena. It illustrated that the thinner lamellae with the larger unit cell and the thicker crystals having the smaller unit cell were melted around the first low and second high melting ranges, respectively. By analyzing in situ WAXD/SAXS data, and then coupling the features of melting behavior, the evolution of the parameters of both crystal unit cell and lamellar crystals, we proposed that the thinner unstable lamellae possess a uniform structure with HV units total inclusion, and the thicker stable lamellae reflect the sandwich structure with HV units partial inclusion. It further affirmed that the thicker sandwich and thinner uniform lamellae formed during the cooling and subsequent isothermal crystallization processes, respectively. These findings fully verify that it is the change of structure of lamellae rather than the melting/recrystallization that is responsible for double melting peaks of isomorphous P(HB‐co‐36.2%HV), and enhance our understanding upon multiple endothermic behaviors of polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1453–1461  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号