首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Mononitrosyl and trans ‐Dinitrosyl Complexes of Phthalocyaninates of Manganese and Rhenium Tetra(n‐butyl)ammonium or di(triphenylphosphane)iminium nitrosylacidophthalocyaninato(2–)manganate, (cat)[Mn(NO)(X)pc2–] (X = ONO, NCO, N3; cat = nBu4N, PNP) is prepared from acidophthalocyaninato(2–)manganese, [Mn(X)pc2–], (cat)NO2 and (nBu4N)BH4 in CH2Cl2 or from nitrosylphthalocyaninato(2–)manganese, [Mn(NO)pc2–] and (nBu4N)X (X = ONO, NCO, N3, NCS) at T < 120 °C, respectively. [Mn(NO)(X)pc2–] dissociates in methanol, and [Mn(NO)pc2–] precipitates. Nitrito(O)phthalocyaninato(2–)manganese, (cat)NO2 and hydrogensulfide yield trans‐di(nitrosyl)phthalocyaninato(2–)manganate, trans[Mn(NO)2pc2–], isolated as red violet (PNP) and (nBu4N) complex salt. Nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)manganese, [Mn(NO)(OPPh3)pc2–] is obtained by addition of OPPh3 to [Mn(NO)pc2–] at 200 °C. Di(triphenylphosphane)phthalocyaninato(2–)rhenium(II) and (PNP)NO2 in CH2Cl2 or in molten (PNP)NO2 and PPh3 at 100 °C yields green blue l‐di(triphenylphosphane)iminium nitrosylnitrito(O)phthalocyaninato(2–)rhenate, l(PNP)[Re(NO)(ONO)pc2–]. Similarly, but with (nBu4N)NO2 red plates of tetra‐(n‐butyl)ammonium trans‐di(nitrosyl)phthalocyaninato(2–)rhenate, (nBu4N)trans[Re(NO)2pc2–] is isolated. Addition of (PNP)Br or (PNP)PF6 to a concentrated solution of (nBu4N)trans[Re(NO)2pc2–] in pyridine precipitates l(PNP)trans[Re(NO)2pc2–]. (nBu4N)trans[Re(NO)2pc2–] and PPh3 at 300 °C yield blue green nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)‐ rhenium, [Re(NO)(OPPh3)pc2–], that is oxidised with iodine precipitating nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)rhenium triiodide, [Re(NO)(OPPh3)pc2–]I3. The crystal structures of l(PNP)[Mn(NO)(ONO)pc2–] ( 1 ), l(PNP)‐ [Mn(NO)(NCO)pc2–] ( 2 ), l(PNP)trans[Mn(NO)2pc2–] ( 3 ), l(PNP)trans[Re(NO)2pc2–] ( 4 ) [Mn(NO)(OPPh3)pc2–] ( 5 ), [Re(NO)(OPPh3)pc2–] ( 6 ), and [Re(NO)(OPPh3)pc2–]I3 · CH2Cl2 ( 7 ) have been determined. The M–N(NO) distance varies between 1.623(12) Å in 5 and 1.846(3) Å in 3 . The M–N–O moiety is almost linear. The UV‐Vis spectra with the B band at ca. 14500 cm–1and the Q band at 30400 cm–1 do not dependent significantly on the axial ligand and the metal atom and its oxidation state. N–O stretching vibrations are observed in the IR spectra between 1701 cm–1 in 3 and 1753 cm–1 in [Mn(NO)pc2–] or for the Re series between 1571 cm–1 in 4 and 1724 cm–1 in 7 . M–N(NO) stretching and M–N–O deformation vibrations are assigned in the IR spectra and resonance Raman spectra between 486 cm–1 in 4 and 620 cm–1 in 1 .  相似文献   

2.
Synthesis and Properties of trans -Di(fluoro)phthalocyaninatorhenate(III); Crystal Structure of the linear -Bis(triphenylphosphine)iminium Double Salt l (PNP) trans[Re(F)2pc2–] · 0.33l (PNP)F · 2 H2O trans-Bis(triphenylphosphine)phthalocyaninato(2–)rhenium(II) reacts with (nBu4N)F · 3 H2O in acetone on air yielding trans-di(fluoro)phthalocyaninato(2–)rhenate(III), trans[Re(F)2pc2–]. The complex anion is precipitated as tetra(n-butyl)ammonium (nBu4N), or after addition of (PNP)HSO4 as linear-bis(triphenylphosphine)iminium (l(PNP)) salt. The latter crystallizes as a double salt of formula l(PNP)trans[Re(F)2pc2–] · 0.33l(PNP)F · 2 H2O in the cubic space group I23 (no. 197) with the cell parameter a = 21.836(2) Å; V = 10412(2) Å3; Z = 6. The Re atom is located in the centre of the (Niso)4 plane (Niso: isoindole-N atom) and coordinates axially two fluorine atoms in a mutual trans position. The Re–N and Re–F distance is 2.035(6) and 1.798(7) Å, respectively. According to the short Re–F distance the asymmetric Re–F stretching vibration is observed in the MIR spectrum at 746 cm–1. Obviously due to a large spin-orbit coupling, the complex salt with an electronic low-spin d4 ground state of ReIII (S = 1) is diamagnetic. Hence a sharp signal is observed at –126.1 ppm in the 19F NMR spectrum. The UV-VIS-NIR spectrum shows the typical π-π* transitions at 15000 (B), 29500 (Q) and 36900 cm–1 (N) and trip-multiplet transitions at 9500/10500 cm–1 and 13200/14100 cm–1.  相似文献   

3.
A Contribution to Rhenium(II)‐, Osmium(II)‐, and Technetium(II)‐Thionitrosyl‐Complexes: Preparation, Structures, and EPR‐Spectra The reaction of [ReVINCl4] and [OsVINCl4] with S2Cl2 leads to the formation of the thionitrosyl complexes [MII(NS)Cl4] (M = Re, Os) which could not be isolated as pure compounds. Addition of pyridine to the reaction mixture results in the formation of the stable compounds trans‐(Ph4P)[OsII(NS)Cl4py], trans‐(Hpy)[OsII(NS)Cl4py], trans‐(Ph4P)[ReII(NS)Cl4py], and cis‐(Ph4P)[ReII(NS)Cl4py]. The crystal structure analyses show for trans‐(Ph4P)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 12.430(3)Å, b = 18.320(4)Å, c = 15.000(3)Å, β = 114.20(3)°, Z = 4), trans‐(Hpy)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 7.689(1)Å, b = 10.202(2)Å, c = 20.485(5)Å, β = 92.878(4)°, Z = 4), trans‐(Ph4P)[ReII(NS)Cl4py] (triclinic, P1¯, a = 9.331(5)Å, b = 12.068(5)Å, c = 15.411(5)Å, α = 105.25(1)°, β = 90.23(1)°, γ = 91.62(1)°, Z = 2), and cis‐(Ph4P)[ReII(NS)Cl4py] (monoclinic, P21/c, a = 10.361(1)Å, b = 16.091(2)Å, c = 17.835(2)Å, β = 90.524(2)°, Z = 4) M‐N‐S angles in the range 168‐175°. This indicates a nearly linear coordination of the NS ligand. The metal atom is octahedrally coordinated in all cases. The rhenium(II) thionitrosyl complexes (5d5 “low‐spin” configuration, S = 1/2) are studied by EPR in the temperature range 295 > T > 130 K. In addition to the detection of the complexes formed during the reaction of [ReVINCl4] with S2Cl2 EPR investigations on diamagnetically diluted powders and single crystals of the system (Ph4P)[ReII/OsII(NS)Cl4py] are reported. The 185, 187Re hyperfine parameters are used to get information about the spin‐density distribution of the unpaired electron in the complexes under study. [TcVINCl4] reacts with S2Cl2 under formation of [TcII(NS)Cl4] which is not stable and decomposes under S8 elimination and rebuilding of [TcVINCl4] as found by EPR monitoring of the reaction.  相似文献   

4.
The title compound, [Re2O3(C19H20N2O2)2], is a hexacoordinate complex containing an [Re2O3]4+ core with a linear O=Re—O—Re=O bridge. The distorted octahedral coordination of the ReV atom is achieved by an N2O2 donor set from the tetradentate imine–phenol ligand. The overall charge of the compound is neutral due to deprotonation of the phenol groups, and the terminating and bridging O atoms. The Re=O and Re—O bond distances of the [Re2O3]4+ core are 1.699 (4) and 1.911 (1) Å, respectively. The Re—O and Re—N bond distances of the equatorial plane are in the ranges 2.024 (4)–2.013 (4) and 2.128 (5)–2.120 (5) Å, respectively.  相似文献   

5.
trans -Bis(triphenylphosphine)phthalocyaninato(2–)rhenium(II): Synthesis, Properties, and Crystal Structure Dirheniumheptoxide reacts with phthalodinitrile in boiling 1-chloronaphthalene and subsequent reprecipitation of the green raw product from conc. sulfuric acid to yield an oxo-phthalocyaninate of rhenium, which is reduced by molten triphenylphosphine forming dark green trans-bis(triphenylphosphine)phthalocyaninato(2–)rhenium(II), trans[Re(PPh3)2pc2–]. The latter crystallizes triclinic in the space group P 1 with the cell parameters as follows: a = 11.512(2) Å, b = 12.795(2) Å, c = 12.858(2) Å, α = 64.42(2)°, β = 79.45(2)°, γ = 72.74(1)°; V = 1628.1(5); Z = 1. Re is in the centre of the (Np)4 plane (Np: N1, N3) and coordinates two triphenylphosphine ligands axially in trans position. The average Re–Np and Re–P distances are 2.007(1) and 2.516(3) Å, respectively. Despite the many extra bands the typical B, Q and N regions of the pc2– ligand are observed at ca. 16500, 28900/32900 and 35300 cm–1. A weak band group at ca. 8900 cm–1 is attributed to a trip-multiplet transition, another one at ca. 14500 cm–1 to a P → Re charge transfer. The vibrational spectra are dominated by internal vibrations of the pc2– ligand. The very weak intensity of the IR bands at 905 and 1327 cm–1 are diagnostic of the presence of ReII.  相似文献   

6.
Synthesis and Structural Characterization of Boron Subphthalocyaninates Halosubphthalocyaninatoboron, [B(X)spc] (X = F, Cl, Br) is obtained by heating phthalonitrile with boron trihalide in quinoline (X = F) or the corresponding halobenzene, resp. [B(C6H5)spc] is prepared from phthalonitrile and tetraphenylborate or tetraphenyloboron oxide, resp. [B(OR)spc] (R = H, CH(CH3)2, C(CH3)3, C6H5) is synthesized by bromide substitution of [B(Br)spc] in pyridine/HOR. Substitution of [B(Br)spc] in carboxylic acids yields [B(OOCR)spc] (R = H, CX3 (X = H, Cl, F), CH2X (X = Cl, C6H5), C6H5). All subphthalocyaninates are characterized electrochemically and by UV‐VIS, IR/FIR, resonance Raman, and 1H/10B‐NMR spectroscopy. Typical B–X stretching vibrations are at 622 (X = Br), 950 (Cl), 1063 (F), 1096 cm–1 (OH) as well as between 1119 and 1052 cm–1 (OR) resp. 985 and 1028 cm–1 (OOCR). The difference ν(C=O)–ν(C–O) > 400 cm–1 confirms the unidentate coordination of the carboxylato ligands. According to the crystal structure analysis of [B(OH)spc], [B(OH)spc] · 2 H2O, [B(C6H5)spc], [B(OC(CH3)3)spc], [B(OOCCH3)spc] · 0.5 H2O · C2H5OH and [B(OOCCH3)spc] · 0.4 H2O · 1.1 C5H5N the spc ligand is concavely distorted. This saucer shaped conformation is independent of the acido ligands and the presence of solvate. The outermost C atomes are vertically displaced in part by more than 2 Å from the Ni plane. The B atom is in a distorted tetrahedral coordination geometry. It is displaced by ca 0.64 Å out of the Ni plane towards the acido ligand. The average B–N distance is 1.500 Å, and the B–O distances range from 1.418(5) to 1.473(2) Å.  相似文献   

7.
Synthesis, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analyses of the Tetrahalogeno‐bis‐Pyridine‐Osmium(III) Complexes cis ‐( n ‐Bu4N)[OsCl4Py2] and trans ‐( n ‐Bu4N)[OsX4Py2], X = Cl, Br By reaction of (n‐Bu4N)2[OsX6], X = Cl, Br, with pyridine and (n‐Bu4N)[BH4] tetrahalogeno‐bis‐pyridine‐osmium(III) complexes are formed and purified by chromatography. X‐ray structure determinations on single crystals have been performed of cis‐(n‐Bu4N)[OsCl4Py2] ( 1 ) (triclinic, space group P1, a = 9.4047(9), b = 10.8424(18), c = 17.007(2) Å, α = 71.833(2), β = 81.249(10), γ = 67.209(12)°, Z = 2), trans‐(n‐Bu4N)[OsCl4Py2] ( 2 ) (orthorhombic, space group P212121, a = 8.7709(12), b = 20.551(4), c = 17.174(4) Å, Z = 4) and trans‐(n‐Bu4N)[OsBr4Py2] ( 3 ) (triclinic, space group P1, a = 9.132(3), b = 12.053(3), c = 15.398(2) Å, α = 95.551(18), β = 94.12(2), γ = 106.529(19)°, Z = 2). Based on the molecular parameters of the X‐ray structure determinations and assuming C2 point symmetry for the anion of 1 and D2h point symmetry for the anions of 2 and 3 the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants of 1 are in the Cl–Os–Cl axis fd(OsCl) = 1.58, in the asymmetrically coordinated N′–Os–Cl · axes fd(OsCl · ) = 1.45, fd(OsN′) = 2.48, of 2 fd(OsCl) = 1.62, fd(OsN) = 2.42 and of 3 fd(OsBr) = 1.39 and fd(OsN) = 2.34 mdyn/Å.  相似文献   

8.
Phthalocyaninates and Tetraphenylporphyrinates of High Co‐ordinated ZrIV/HfIV with Hydroxo, Chloro, (Di)Phenolato, (Hydrogen)Carbonato, and (Amino)Carboxylato Ligands Crystals of tetra(n‐butyl)ammonium cis‐tri(phenolato)phthalocyaninato(2‐)zirconate(IV) ( 2 ) and ‐hafnate(IV) ( 1 ), di(tetra(n‐butyl)ammonium) cis‐di(tetrachlorocatecholato(O, O')phthalocyaninato(2‐)zirconate(IV) ( 3 ), and cis‐(di(μ‐alaninato(O, O')di(μ‐hydroxo))di(phthalocyaninato(2‐)zirconium(IV)) ( 12 ) have been isolated from tetra(n‐butyl)ammonium hydroxide solutions of cis‐di(chloro)phthalocyaninato(2‐)zirconium(IV) and ‐hafnium(IV), respectively, and the corresponding acid in polar organic solvents. Similarly, with cis‐di(chloro)tetraphenylporphyrinato(2‐)zirconium(IV), cis[Zr(Cl)2tpp] as precursor crystalline tetra(n‐butyl)ammoniumcis‐tetrachlorocatecholato(O, O')hydrogentetrachlorocatecholato(O)tetraphenylporphyrinato(2‐)zirconate(IV) ( 4 ), cis‐hydrogencarbonato(O, O')phenolatotetraphenylporphyrinato(2‐)zirconium(IV) ( 6 ), cis‐di(benzoato(O, O'))tetraphenylporphyrinato(2‐)zirconium(IV) ( 11 ), and cis‐tetra(μ‐hydroxo)di(tetraphenylporphyrinato(2‐)zirconium(IV)) ( 13 ) with a cis‐arrangement of the symmetry equivalent μ‐hydroxo ligands, and from di(acetato)tetraphenylporphyrinato(2‐)zirconium(IV) the corresponding trans‐isomer ( 14 ) have been prepared. The endothermic dehydration at 215 °C of 13/14 yields μ‐oxodi(μ‐hydroxo)di(tetraphenylporphyrinato(2‐)zirconium(IV)) ( 15 ). 15 also precipitates on dilution of a solution of cis[Zr(X)2tpp] (X = Cl, OAc) in dmf/(nBu4N)OH with water, while on prolonged standing of this solution on air tri(tetra(n‐butyl)ammonium) cis‐(nido〈di(carbonato(O, O'))undecaaquamethoxide〉tetraphenylporphyrinato(2‐)zirconate(IV) ( 7 ) crystallizes, in which ZrIV coordinates a supramolecular nestlike nido〈(O2CO)2(H2O)11OCH35— cluster anion stabilised by hydrogen bonding in a nanocage of surrounding (nBu4N)+ cations. On the other hand, cis[Zr(Cl)2pc] forms with (Et4N)2CO3 in dichloromethane di(tetraethylammonium) cis‐di(carbonato(O, O')phthalocyaninato(2‐)zirconate(IV) ( 5 ). cis[Zr(Cl)2tpp] dissolves in various O‐donor solvents, from which cis‐di(chloro)dimethylformamidetetraphenylporphyrinato(2‐)zirconium(IV) ( 8 ), cis‐di(chloro)dimethylsulfoxidetetraphenylporphyrinato(2‐)zirconium(IV) ( 9 ), and a 1:1 mixture ( 10 ) of cis‐di(chloro)dimethylsulfoxidetetraphenylporphyrinato(2‐)zirconium(IV) ( 10a ) and cis‐chlorodi(dimethylsulfoxide)tetraphenylporphyrinato(2‐)zirconium(IV) chloride ( 10b ) crystallize. All complexes contain solvate molecules in the solid state, except 3 . ZrIV/HfIV is directed by ∼1Å out of the plane of the tetrapyrrolic ligand (pc, tpp) towards the mutually cis‐coordinated axial ligands. In the more concavely distorted phthalocyaninates, ZrIV is mainly eight‐coordinated and in the tetraphenylporphyrinates seven‐coordinated. The octa‐coordinated Zr atom is in a distorted quadratic antiprism, and the hepta‐coordinated one is in a square‐base‐trigonal‐cap cooordination polyhedron. In most tpp complexes, the Zr atom is displaced by up to 0.3Å out of the centre of the coordination polyhedron towards the tetrapyrrolic ligand. In 13/14 , both antiprisms are face shared by an O4 plane, and in 12 they are shared by an O2 edge and the O atoms of the bridging aminocarboxylates, the dihedral angle between the O4 planes of both antiprisms being 50.1(1)°. The mean Zr‐Np distance is 0.05Å longer in the pc complexes than in the tpp complexes (d(Zr‐Np)pc = 2.31Å). In the monophenolato complexes, the mean Zr‐O distance (∼2.00Å) is shorter than in the complexes with other O‐donor ligands (d(Zr‐O)pc = 2.18Å; d(Zr‐O)tpp = 2.21Å); the Zr‐Cl distances vary between 2.473(1) and 2.559(2)Å (d(Zr‐Cl)tpp = 2.51Å). d(C‐Oexo) = 1.494(4)Å in the bidentate hydrogencarbonato ligand in 6 is 0.26Å longer than in the bidentate carbonato ligands in 5 and 7 . 9 and 10a are rotamers slightly differing by the orientation of the axial ligands with respect to the tpp ligand. In 1—4, 6 , and 11 the phenolato, catecholato, and benzoato ligands, respectively, are in syn‐ and/or anti‐conformations with respect to the plane of the macrocycle. π‐Dimers with modest overlap of the neighbouring macrocyclic rings are observed in 5, 6, 8, 9, 10b, 12 , and 14 . The common UV/Vis spectroscopical and vibrational properties of the new phthalocyaninates and tetraphenylporphyrinates scarcely reflect their rich structural diversity.  相似文献   

9.
The N‐functionalized macrocyclic ligand 2,13‐bis(1‐naphthalenylmethyl)‐5,16‐dimethyl‐2,6,13,17‐tetraazatricyclo(14,4,01.18,07.12)docosane (L3) and its copper(II) complex were prepared. The crystal structure of [Cu(L3)](ClO4)2·2CH3CN was determined by single‐crystal X‐ray diffraction at 150 K. The copper atom, which lies on an inversion centre, has a square planar arrangement and the complex adopts a stable trans‐III configuration. The longer distance [2.081(2) Å] for Cu–N(tertiary) compared to 2.030(3) Å for Cu–N(secondary) may be due to the steric effect of the attached naphthalenylmethyl group on the tertiary nitrogen atom. Two perchlorate ions are weakly attached to copper in axial sites and are further connected to the ligand of the cation through NH ··· O hydrogen bonds [N ··· O 3.098 Å]. IR and UV/Vis spectroscopic properties are also described.  相似文献   

10.
Crystal Structures, Normal Coordinate Analyses, and 15N NMR and 77Se NMR Chemical Shifts of trans ‐[OsO2(NCO)4]2–, trans ‐[OsO2(NCS)4]2–, and trans ‐[OsO2(SeCN)4]2– The crystal structures of trans‐(Ph3PNPPh3)2[OsO2(NCO)4] ( 1 ) (orthorhombic, space group Pbca, a = 19.278(3), b = 16.674(4), c = 19.982(2) Å, Z = 4), trans(n‐Bu4N)2[OsO2(NCS)4] ( 2 ) (triclinic, space group P1, a = 12.728(3), b = 12.953(3), c = 16.255(6) Å, α = 97.39(4), β = 105.62(2), γ = 95.25(3)°, Z = 2) and trans‐(n‐Bu4N)2[OsO2(SeCN)4] ( 3 ) (tetragonal, space group I4/m, a = 13.406(2), c = 12.871(1) Å, Z = 2) have been determined by single‐crystal X‐ray diffraction analysis, showing the bonding of NCO and NCS via the N atom but the coordination of SeCN via the Se atom to osmium. Based on the molecular parameters of the X‐ray determinations the vibrational spectra have been assigned by normal coordinate analyses. The valence force constants are for 1 fd(OsO) = 6.43, fd(OsN) = 3.32, fd(NC) = 14.50, fd(CO) = 12.80, for 2 fd(OsO) = 6.56, fd(OsN) = 1.75, fd(NC) = 15.00, fd(CS) = 5.50, and for 3 fd(OsO) = 6.75, fd(OsSe) = 0.99, fd(SeC) = 3.23, fd(CN) = 15.95 mdyn/Å. The observed NMR shifts are δ(15N) = –386.6 ( 1 ), δ(15N) = –294.7 ( 2 ) and δ(77Se) = 108.8 ppm ( 3 ).  相似文献   

11.
In an attempt to crystallize Ce[ReO4]4 · xH2O from aqueous solutions of equimolar amounts of Ce[SO4]2 and Ba[ReO4]2 via salt‐metathesis the serendipitous formation of colorless, transparent, rod‐shaped single crystals of CaNa[ReO4]3 was observed as a result of calcium and sodium impurities within the improperly deionized water used. Structure analysis by X‐ray diffraction lead to the conclusion that the title compound crystallizes in the ThCd[MoO4]3 structure type with the hexagonal space group P63/m and the lattice parameters a = 991.74(6) pm, c = 636.53(4) pm, c/a = 0.642 for Z = 2. The crystal structure contains purely oxygen surrounded and crystallographically unique cations, namely Ca2+ in tricapped trigonal prismatic (d(Ca–O) = 6 × 249 pm + 3 × 254 pm), Na+ in octahedral (d(Na–O) = 6 × 241 pm), and Re7+ in tetrahedral coordination (d(Re–O) = 171–173 pm). Furthermore, it was possible to yield an almost phase‐pure microcrystalline powder of the title compound from a melt of equimolar amounts of Na[ReO4] and Ca[ReO4]2 stemming from aquatically obtained precursors.  相似文献   

12.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of trans ‐( n ‐Bu4N)4[Pt(ECN)2(ox)2], E = S, Se By reaction of (n‐Bu4N)2[Pt(ox)2] with (SCN)2 and (SeCN)2 in dichloromethane trans‐(n‐Bu4N)2[Pt(SCN)2(ox)2] ( 1 ) und trans‐(n‐Bu4N)2[Pt(SeCN)2(ox)2] ( 2 ) are formed. The crystal structures of 1 (triclinic, space group P1, a = 10.219(2), b = 11.329(2), c = 12.010(3) Å, α = 114.108(15), β = 104.797(20), γ = 102.232(20)°, Z = 1) and 2 (triclinic, space group P1, a = 10.288(1), b = 11.332(1), c = 12.048(1) Å, α = 114.391(9), β = 103.071(10), γ = 102.466(12)°, Z = 1) reveal, that the compounds crystallize isotypically with centrosymmetric complex anions. The bond lengths are Pt–S = 2.357, Pt–Se = 2.480 and Pt–O = 2.011 ( 1 ) und 2.006 Å ( 2 ). The oxalato ligands are nearly plane with O–C–C–O torsion angles of 1.7–3.6°. The via S or Se coordinated linear groups are inclined between both oxalato ligands with Pt–E–C angles of 100.4 (E = S) and 97.4° (Se). In the vibrational spectra the PtE stretching vibrations are observed at 299–314 ( 1 ) and 189–200 cm–1 ( 2 ). The PtO stretching vibrations are coupled with internal vibrations of the oxalato ligands and appear in the range of 400–800 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS) = 1.75, fd(PtSe) = 1.35 and fd(PtO) = 2.77 mdyn/Å. The NMR shifts are δ(195Pt) = 5435.2 ( 1 ), 5373.7 ( 2 ) and δ(77Se) = 353.2 ppm with the coupling constant 1J(SePt) = 37.4 Hz.  相似文献   

13.
Synthesis, Crystal Structures, and Vibrational Spectra of trans ‐[Pt(N3)4X2]2–, X = Cl, Br, I By oxidative addition to (n‐Bu4N)2[Pt(N3)4] with the elemental halogens in dichloromethane trans‐(n‐Bu4N)2[Pt(N3)4X2], X = Cl, Br, I are formed. X‐ray structure determinations on single crystals of trans‐(Ph4P)2[Pt(N3)4Cl2] (triclinic, space group P1, a = 10.352(1), b = 10.438(2), c = 11.890(2) Å, α = 91.808(12), β = 100.676(12), γ = 113.980(10)°, Z = 1), trans‐(Ph4P)2[Pt(N3)4Br2] (triclinic, space group P1, a = 10.336(1), b = 10.536(1), c = 12.119(2) Å, α = 91.762(12), β = 101.135(12), γ = 112.867(10)°, Z = 1) and trans‐(Ph4P)2[Pt(N3)4I2] (triclinic, space group P1, a = 10.186(2), b = 10.506(2), c = 12.219(2) Å, α = 91.847(16), β = 101.385(14), γ = 111.965(18)°, Z = 1) reveal, that the compounds crystallize isotypically with octahedral centrosymmetric complex anions. The bond lengths are Pt–Cl = 2.324, Pt–Br = 2.472, Pt–I = 2.619 and Pt–N = 2.052–2.122 Å. The approximate linear Azidoligands with Nα–Nβ–Nγ‐angles = 172.1–176.8° are bonded with Pt–Nα–Nβ‐angles = 116.2–121.9°. In the vibrational spectra the platinum halogen stretching vibrations of trans‐(n‐Bu4N)2[Pt(N3)4X2] are observed in the range of 327–337 (X = Cl), at 202 (Br) and in the range of 145–165 cm–1 (I), respectively. The platinum azide stretching modes of the three complex salts are in the range of 401–421 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 1.90, fd(PtBr) = 1.64, fd(PtI) = 1.22, fd(PtNα) = 2.20–2.27 and fd(NαNβ, NβNγ) = 12.44 mdyn/Å.  相似文献   

14.
The solid‐state‐melt reaction of (NH4)2[Re2F8] · 2H2O with 2‐hydroxypyridine (2‐HOpy) produced dark‐red Re2(2‐Opy)4F2 ( 1 ). This air‐stable compound was obtained in crystalline form as 1· CHCl3. It was characterized in the solid state by single‐crystal X‐ray diffraction and in solution by UV/Vis spectroscopy and cyclic voltammetry. 1· CHCl3 forms triclinic crystals with α = 8.3254(5) Å, b = 8.5563(5) Å, c = 11.6784(8) Å, α = 82.723(3)°, β = 75.769(3) °, γ = 64.407(2) °. The Re–Re and Re–F distances were 2.2091(7) and 2.115(6) Å, respectively. The molecule is isostructural with the corresponding chloro derivative.  相似文献   

15.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of cis‐ and trans‐(n‐Bu4N)2[PtF2(ox)2] and (n‐Bu4N)2[PtF4(ox)] By treatment of trans‐(n‐Bu4N)2[PtCl2(ox)2] and (n‐Bu4N)2[PtCl4(ox)] with XeF2 in propylene carbonate cis‐ and trans‐(n‐Bu4N)2[PtF2(ox)2] ( 1 , 2 ) and (n‐Bu4N)2[PtF4(ox)] ( 3 ) are formed which have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structure of trans(n‐Bu4N)2[PtF2(ox)2] ( 2 ) (tetragonal, space group P42/n, a = 15.5489(9), b = 15.5489(9), c = 17.835(1)Å, Z = 4) und Cs2[PtF4(ox)] ( 3 ) (monoclinic, space group C2/m, a = 14.5261(7), b = 6.2719(4), c = 9.6966(9)Å, β = 90.216(8)°, Z = 4) reveal complex anions with nearly D2h and C2v point symmetry. The average bond lengths in the symmetrical coordinated axes are Pt—F = 1.93 ( 2 , 3 ) and Pt—O = 1.987 ( 2 ) and in the F—Pt—O′‐axes Pt—F = 1.957 and Pt—O′ = 1.977Å ( 3 ). The oxalato ligands are nearly planar with a maximum displacement of the ring atoms of 0.05 ( 2 ) und 0.01Å ( 3 ) to the calculated best planes. In the vibrational spectra the symmetric and antisymmetric PtF stretching vibrations are observed at 583 and 586 ( 2 ) and 576 and 568 cm—1 ( 3 ). The PtF modes appear at 565 and 562 ( 1 ) and 560 cm—1 ( 3 ). The PtO and PtO′ stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 400—800 cm—1. Based on the molecular parameters of the X‐ray determinations ( 2 , 3 ) and estimated data ( 1 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtF) = 3.55 ( 2 ) and 3.38 ( 3 ), fd(PtF) = 3.23 ( 1 ) and 3.20 ( 3 ), fd(PtO) = 2.65 ( 1 ) and 2.84 ( 2 ) and fd(PtO′) = 2.97 ( 1 ) and 3.00 mdyn/Å ( 3 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 8485 ( 1 ), 8597 ( 2 ) and 10048 ppm ( 3 ), δ(19F) = —350 ( 2 ) and —352 ( 3 ) and δ(19F) = —323 ( 1 ) and —326 ppm ( 3 ) with the coupling constants 1J(PtF) = 1784 ( 2 ) and 1864 ( 3 ) and 1J(PtF) = 1525 ( 1 ) and 1638 Hz ( 3 ).  相似文献   

16.
The novel dinuclear Ni2+ complex [Ni2(μ‐Cl)(μ‐OAc) (EGTB)]·Cl·ClO4·2CH3OH, where EGTB is N, N, N′, N′‐tetrakis (2‐benzimidazolyl methyl‐1, 4‐di‐ethylene amino)glycol ether, crystallizes in the orthorhombic space group Pnma with a = 15.272(2), b = 14.768(2), c = 22.486(3) Å, V = 5071.4(12) Å3, Z = 4, Dcalc = 1.414 g cm?3, and is bridged by triply bridging agents of a chloride ion, an acetate and an intra‐ligand (‐OCH2CH2O‐) group. The nickel coordination geometry is that of a slightly distorted octahedron with a NiN3O2Cl arrangement of the ligand donor atoms. The Ni–Cl distance is 2.361(2) Å, and two Ni–O distances are 1.996(5) and 2.279(6) Å. The three Ni–N distances are 2.033(7), 2.060(6), and 2.166(6) Å with the Ni–N bond trans to an ether oxygen the shortest, the Ni–N bond trans to an acetate oxygen the middle and the Ni–N bond trans to Cl the longest.  相似文献   

17.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of (Ph4P)2[OsN(N3)5] and 15N NMR Chemical Shifts of Nitridoosmates(VI, VIII) The treatment of (Ph4P)[OsNCl4] with NaN3 yields (Ph4P)2[OsN(N3)5], which crystal structure has been determined by single crystal X‐ray diffraction analysis (monoclinic, space group P 21/a, a = 20.484(6), b = 11.168(1), c = 20.666(4) Å, β = 97.35(3)°, Z = 4). The IR and Raman vibrations were assigned by a normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(Os≡N) = 8.52, fd(Os–Nα) = 1.99, fd(Nα–Nβ) = 12.42, fd(Nβ–Nγ) = 12.73 and for the azido ligand in trans‐position to the nitrido group fd(Os–Nα · ) = 1.84, fd(Nα · –Nβ · ) = 11.91, fd(Nβ · –Nγ · ) = 12.18 mdyn/Å. The 15N NMR spectra of various nitridoosmates reveal the chemical shifts δ(15N) for K[OsO315N] = 387.6, K2[Os15NCl5] = 446.7, (Ph4P)[Os15NCl4] = 352.9, [(n‐C6H13)4N]2[Os15N(N3)5] = 307.3 and for [(n‐Pr)4N]2[Os15N(15NCO)5] = 483,7 (Os≡N), –417,7 (OsNCOeq) und –392,8 ppm (OsNCOax).  相似文献   

18.
Intraconfigurational, Trip‐Multiplet, and Anomalously Polarised A1g and A2g Transitions in Electronic and Vibrational Resonance Raman Spectra of (Spin‐Degenerate) trans ‐Di(cyano)phthalocyaninatorhenates Brown bis(tetra(n‐butyl)ammonium) trans‐di(cyano)phthalocyaninato(2‐)rhenate(II) ( 1 ) is prepared by melting bis(phthalocyaninato(2‐)rhenium(II)) with tetra(n‐butyl)ammonium cyanide. According to electrochemical data, 1 is oxidised by iodine to yield blue tetra(n‐butyl)ammonium trans‐di(cyano)phthalocyaninato(2‐)rhenate(III) ( 2 ), whose cation exchange in the presence of bis(triphenylphosphine)iminium salts has been confirmed by x‐ray structure determination. 1 and 2 dissolve without dissociation of the cyano ligands in conc. sulfuric acid. Dilution with cold water precipitates blue trans‐di(cyano)phthalocyaninato(2‐)rhenium(III) acid. 1 and 2 are oxidised by bromine yielding violet trans‐di(cyano)phthalocyaninato(1‐)rhenium(III). Oxidation of 2 with dibenzoylperoxide and N‐chlorsuccinimide is described. 1 and 2 are characterised by polarised resonance Raman(RR) spectra, FIR/MIR spectra, and UV‐Vis‐NIR spectra. Due to a Kramers degenerate ground electronic state of low‐spin ReII, a polarisation anomaly of the totally symmetric vibrations a1g at 598 and 672 cm–1 with depolarisation ratios ρl > 3 is observed in the RR spectra of 1 . Weak bands in the unusual UV‐Vis‐NIR spectrum of 1 , starting at 10200 cm–1, are attributed to trip‐multiplet (TM) transitions. An electronic RR effect is detected for 2 . The selectively enhanced anomalously polarised line at 1009 cm–1 with ρl ≈ 15 and the (de)polarised lines between 1688 and 2229 cm–1 are attributed to intraconfigurational transitions A1g → A2g > A1g, B1g, B2g, Eg arising from the 3T1g ground electronic state of low‐spin ReIII split by spin‐orbit coupling and low symmetry (D ). Some of their vibronic bands are detected in the IR spectrum between 1900 and 4000 cm–1. B and Q transitions of 2 at 16700 and 31900 cm–1, respectively, as well as eight weak TM transitions are observed between 5050 and 26100 cm–1.  相似文献   

19.
Synthesis, Crystal Structures, and Vibrational Spectra of trans ‐[Pt(N3)4(ECN)2]2–, E = S, Se By oxidative addition to (n‐Bu4N)2[Pt(N3)4] with dirhodane in dichloromethane trans‐(n‐Bu4N)2[Pt(N3)4(SCN)2] and by ligand exchange of trans(n‐Bu4N)2[Pt(N3)4I2] with Pb(SeCN)2 trans‐(n‐Bu4N)2[Pt(N3)4(SeCN)2] are formed. X‐ray structure determinations on single crystals of trans‐(Ph4P)2[Pt(N3)4(SCN)2] (triclinic, space group P 1, a = 10.309(3), b = 11.228(2), c = 11.967(2) Å, α = 87.267(13), β = 75.809(16), γ = 65.312(17)°, Z = 1) and trans‐(Ph4P)2[Pt(N3)4(SeCN)2] (triclinic, space group P 1, a = 9.1620(10), b = 10.8520(10), c = 12.455(2) Å, α = 90.817(10), β = 102.172(10), γ = 92.994(9)°, Z = 1) reveal, that the compounds crystallize isotypically with octahedral centrosymmetric complex anions. The bond lengths are Pt–S = 2.337, Pt–Se = 2.490 and Pt–N = 2.083 (S), 2.053 Å (Se). The approximate linear Azidoligands with Nα–Nβ–Nγ‐angles = 172,1–175,0° are bonded with Pt–Nα–Nβ‐angles = 116,7–120,5°. In the vibrational spectra the platinum chalcogen stretching vibrations of trans‐(n‐Bu4N)2[Pt(N3)4(ECN)2] are observed at 296 (E = S) and in the range of 186–203 cm–1 (Se). The platinum azide stretching modes of the complex salts are in the range of 402–425 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS) = 1.64, fd(PtSe) = 1.36, fd(PtNα) = 2.33 (S), 2.40 (Se) and fd(NαNβ, NβNγ) = 12.43 (S), 12.40 mdyn/Å (Se).  相似文献   

20.
Crystal Structure, Vibrational Spectrum, and Normal Coordinate Analysis of (PNP)2[ReFBr5] · H2O From the complex mixture obtained by oxidative ligand exchange of [ReBr6]2– with BrF3 [ReFBr5]2– has been isolated by ion exchange chromatography on diethylaminoethyl cellulose with 45% yield. The X-ray structure determination of (PNP)2[ReFBr5] · H2O (monoclinic, space group P21/c with a = 21.498(2), b = 13.314(3), c = 23.945(2) Å, β = 105.235(7)°, Z = 4) reveals a completely ordered anion sublattice resulting from the solvent water linked to the F ligand by a hydrogen bond (O–F: 2.758(6) Å). Due to the stronger trans influence of Br compared with F on the F · –Re–Br′ axis the Re–Br′ distance is shortened by 0.6% with regard to symmetrically coordinated axes. Based on the molecular parameters of the X-Ray determination the low temperature (10 K) IR and Raman spectrum of the (Me4N) salt is assigned by a normal coordinate analysis. The strengthening of the Re–Br′ bond due to the trans influence is indicated by an increase of the valence force constant fd(ReBr′) = 1.43 by 8% as compared with fd(ReBr) = 1.32 mdyn/Å of symmetric axes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号