首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We carried out the measurements of the equilibrium size of N-isopropylacrylamide (NIPA) gel immersed in a dilute aqueous solution of hydroquinone (HQ) as a function of temperature. It was found that, by embedding a small amount of HQ molecules into the gel fluid, volume phase transition behavior of the NIPA gel changed qualitatively depending on the HQ concentration. Moreover, the change in phase transition from continuous to discontinuous was observed without permanent alteration of polymer networks such as hydrolysis. This fact suggests that, by changing HQ concentration, we will be able to find a critical isobar without changing the gel structure.  相似文献   

2.
Transition between collapsed state phases and discontinuous volume phase transition for a hydrogen bonding gel, poly(methacrylic acid-co-dimethyl acrylamide), were observed by using both the volume measurements and fluorescence intensity of the pyranine fluoroprobe (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt) bonded to the gel by means of electrostatic interactions. In the collapsed state, while there is no appreciable change in the volume of the gel, a considerable variation in the fluorescence intensity occurred around 30 degrees C signaling a second order phase transition between collapsed state phases, from relatively frozen to a fluctuating phase. Our analysis of the data around 30 degrees C indicates that the critical point of gel volume transition belongs to the so-called mean-field universality class, as predicted in Onuki [Phys. Rev. A 38, 2192 (1988)] and by Golubovic and Lubensky [Phys. Rev. Lett. 63, 1082 (1989)]. The relaxation time for the equilibrium swelling critically depends on the temperature and diverges near 60 degrees C, where both fluorescence intensity and the volume of the gel change drastically and indicate the discontinuous volume phase transition. The swelling kinetics of the critical gel during the discontinuous volume phase transition can be modeled best with the first term in the expansion of the Li-Tanaka equation for a long initial period of the swelling time.  相似文献   

3.
The authors study volume phase transitions of a nematic gel immersed in a liquid crystal (LC) solvent, which shows a second-order nematic-smectic A phase transition (NST). Combining Flory's elastic energy [Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953)] for a swelling of the gel with the McMillan model [Phys. Rev. A 4, 1238 (1971)] for smectic ordering, the authors calculate the equilibrium swelling of the gel and smectic order parameters as a function of temperature. The authors take into account an attractive interaction parameter c between the gel and LC solvents. On increasing the value of the coupling constant c, a second-order NST of the gel is changed to a first-order one and a continuous volume phase transition of the gel is changed to a discontinuous one. The authors find a tricritical point of the gel induced by smectic ordering.  相似文献   

4.
Covalently immobilized pore-surface gel phases were prepared in a functionalized macroporous ultra-high-molecular-weight polyethylene by covalent coupling of lightly cross-linked polymer colloid particles [50% styrene, 49.8% (chloromethyl)stryrene, 0.2% divinylbenzene] to the interstitial pore surfaces. Swelling the covalently coupled colloid particles in a good solvent followed by chemical derivitization resulted in an immobilized pore-surface gel phase rich in primary amine groups. The macromolecular reactivity and molecular size-exclusion characteristics of the aminated pore-surface gel phase were then determined using monofunctional, amine-reactive, poly (ethylene glycol)s (PEG). Pegylated pore-surface gel phases that ranged from 71% (10,000 molecular weight PEG) to 56% (40,000 molecular weight PEG) PEG by weight resulted from reaction of the aminated gel phase with the PEG probe molecules. The number of PEG molecules reacting with the aminated pore-surface gel phase depends only on the Flory radius (or radius of gyration) of the PEG molecule to the negative 2.49th power i.e., 1/R f 2.49, corresponding to a M−1.48 dependence. The immobilized and pegylated polymer colloid particles swell by a factor of 16–25 times the diameter of the original polymer colloid particles in water, thereby demonstrating that pegylation occurred though a substantial fraction of the volume of the immobilized colloid particles. Received: 18 January 1999 Accepted in revised form: 8 June 1999  相似文献   

5.
The diffusion behavior of poly(ethylene glycol) (PEG) in N-isopropylacrylamide (NIPAAm) hydrogels was investigated using confocal Raman spectroscopy with regard to temperature (25°C, 30°C and 35°C), PEG concentration (10 and 40?wt.%), PEG molecular weight (2,000 and 12,000?g/mol) and addition of the compatible solute ectoine (0.1 and 2?wt.%). Swelling and shrinking of the gels was observed by means of confocal Raman spectroscopy. The swelling behavior of NIPAAm gels in aqueous solutions of PEG and ectoine was found to resemble the swelling behavior in pure water with regard to temperature, i.e., the gel shrinks with increasing temperature. However, the presence and concentration of PEG and ectoine influence the swelling behavior by lowering the volume phase-transition temperature of the gel and facilitating shrinking. In some cases, a re-swelling of the gel was observed after the initial shrinking at the onset of PEG diffusion, which can be explained by PEG changing the chemical potential in the gel phase as it diffuses into the sample allowing the water to re-enter. The expulsion of water from the gel during shrinking and the so-caused increase of PNIPAAm and PEG concentrations in some cases led to the PEG diffusion seemingly being faster in more shrunken gels despite of their higher diffusion resistance.  相似文献   

6.
Swelling and deswelling kinetics was investigated for three types of cylindrical poly(N-isopropylacrylamide) (PNIPA) gels differing in crosslink density. The temperature dependence curves of the volume of the gel specimens were different from one another. One of the gel specimens was considered as a critical gel showing the continuous volume phase transition. The volume change process of the specimens after a temperature jump was examined. In the deswelling processes with temperature jumps to temperatures higher than 35 degrees C, a phase separation was observed in the gel specimens and the volume change slowed down due to the homogenization after the phase separation. The value of the diffusion constant obtained without the phase separation decreased rapidly as temperature approaches the transition temperature. The rapid decrease for the critical gel indicates the emergence of the critical slowing-down. The value of the critical exponent for the correlation length suggests that the universality class for the volume phase transition of the critical PNIPA gel belongs to the class for the classical theory.  相似文献   

7.
We investigate volume phase transition in gels immersed in mixture solvents, on the basis of a three-component Flory-Rehner theory. When the selectivity of the minority solvent component to the polymer network is strong, the gel tends to shrink with an increasing concentration of the additive, regardless of whether it is good or poor. This behavior originates from the difference of the additive concentration between inside and outside the gel. We also found the gap of the gel volume at the transition point can be controlled by adding the strongly selective solutes. By dissolving a strongly poor additive, for instance, the discontinuous volume phase transition can be extinguished. Furthermore, we observed that another volume phase transition occurs far from the original transition point. These behaviors can be well explained by a simplified theory neglecting the nonlinearity of the additive concentration.  相似文献   

8.
(接上期)2聚(N-异丙基丙烯酰胺)微凝胶在水中的体积相变2.1理论部分凝胶体积相变热力学:聚合物凝胶的溶胀和蜷缩可以用膨胀因子α=(V/V0)1/3=(ΦT/ΦΘ)1/3来表征,其中ΦΘ的ΦT分别是温度Θ和T下凝胶网络的体积分数。在平均场理论中,中...  相似文献   

9.
The variation of macroscopic morphology of the titania (TiO2) films has been studied at various dipping conditions for a sol-gel dip-coating system containing poly(ethylene glycol) (PEG). The variation of macroscopic morphology is understood consistently by considering both the volume fraction of solvent phase during the phase separation and the water to alkoxide ratio in the sol film. The gel film shrinks and the average pore diameter increases concurrently with the thermal decomposition of PEG while the morphology depends less on the crystallization of titania gel.  相似文献   

10.
聚丙烯酰胺(PAAm)和聚乙二醇(PEG)两种水溶液混合时能形成双水相体系,其中上层为PEG富集相,下层为PAAm和PEG的混合相.用凝胶渗透色谱(GPC)法和浊度滴定法研究了PAAm-PEG-H2O双水相体系的相图,结果表明,随着PEG分子量的升高,体系的分相浓度下降.在PAAm-PEG20000-H2O体系中,随着体系温度升高,分相浓度先下降后升高,55℃时分相浓度最低.丙烯酰胺(AAm)单体能在两相中发生相分配,分配系数随着PAAm浓度和平衡温度的增加而增大,随着PEG浓度的增加而下降.  相似文献   

11.
Crude extracts of turnip crinkle virus upon agarose gel electrophoresis yield (i) virus patterns unperturbed by contaminants; (ii) plots of mobility vs. gel concentration (Ferguson plots) parallel with those of the purified virus. The parallelism suggests similarity in size and shape but a lower net charge for the crude virus. This result is obtained when gel electrophoresis is carried out either in a continuous buffer or in a discontinuous (moving boundary electrophoresis) buffer system. The latter mode has the substantial benefit of electrophoretic (auto-)concentration of dilute virus sample prior to resolution. Thus, the Ferguson plot analysis in a discontinuous buffer system of turnip crinkle virus can be viewed as a model procedure for the physical identification of other viruses contained in dilute extracts, feasible even in the absence of a prior knowledge as to the nature of, or isolation of, the virus.  相似文献   

12.
PEG/SiO2 shape-stabilized phase change materials with various mass fractions and molecular weights of PEG were prepared by the sol–gel method. Polyethylene glycol (PEG) and tetraethyl orthosilicate (TEOS) were chosen as the phase change substance and the silica framework precursor, respectively. The as-prepared samples were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) techniques. It is shown that the silica framework strongly confined the crystallization of PEG. The crystallinity and thermodynamic performance of the composites were undesirable for PEG with molecular weight of 1500 even when the PEG content reached 80 wt%. The crystallinity and thermodynamic performances of the PEG/SiO2 composites first decline then improve with the increase of the PEG molecular weights, owing to the different confinement behaviors of the silica framework. Finally, we investigated the phase change mechanism of the PEG/SiO2 composites under the different confinement of the silica framework.  相似文献   

13.
Variation of free‐volume parameters—average radius size, number concentration, and size distribution—of a polyacrylamide (PAAm) gel containing 4 mol % carboxylate anions is studied during a volume phase transition (VPT) caused by a change of sodium chloride (NaCl) concentration. A positron annihilation lifetime technique is used for the determination of the free‐volume characteristics. The measurement is performed in an acetone–water 3 : 2 (v/v) [0.27 : 0.73 (mol/mol)] mixed solvent at 20°C, and the free‐volume parameters deduced from the analysis of a positron annihilation curve are utilized. An average free‐volume size of the swollen PAAm gel, ∼ 0.32 nm in radius, almost agrees with that of the mixed solvent for a corresponding salt concentration, while the size of the collapsed gel, which is ∼ 0.28 nm in radius, is smaller than that of the mixed solvent. The results for the collapsed gel indicate that the hydrogen bond plays a significant role in the nanoscopic environment. The radius of the free‐volume of the swollen PAAm gel seems to be influenced by the composition between acetone and water. An inhomogeneity of the nanoscopic structure inside the PAAm gels is discussed in terms of a dispersion of a size distribution of the free‐volume. It is concluded that a change of the nanoscopic environment of the PAAm gel during the VPT can be monitored through the free‐volume parameters obtained by the positron annihilation lifetime technique. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2634–2641, 1999  相似文献   

14.
Volume phase transitions of a DNA gel and a single giant DNA chain caused by spermidine(3+) (SPD(3+)) were investigated. The change in volume for the single DNA (VV(0) approximately 10(-5)) was four orders of magnitude greater than that for the DNA gel ( approximately 10(-1)), while the critical SPD(3+) concentration for the gel (1.8 mM) was one order of magnitude greater than that of the single DNA (0.12-0.25 mM) at the same pH 6.86. We tried to describe mean-field theories with virial expansion, which is valid for the coil-globule transition of a single polymer chain, for the volume phase transitions to explain the reason why such marked differences appeared. Considering the degree of the ordering of Kuhn segments arising from the gel network structure together with the chain length of cross-linked polymer chains, the volume phase transitions were described and then the significant differences were reproduced quantitatively. We concluded that the network structure plays a significant role in the volume phase transition of the gel.  相似文献   

15.
通过反相浓乳液聚合方法制备了系列聚苯乙烯/二乙烯基苯(PS/DVB)泡孔聚合物.水作为分散相,其分散相体积分数可达90%;苯乙烯单体作为连续相,聚合后构成PS/DVB泡孔聚合物的结构骨架.用扫描电镜系统研究了乳化剂的浓度、分散相体积分数、添加不同沸点的溶剂等对泡孔聚合物断面形态的影响,并考察了泡孔聚合物对水和柴油的吸附情况.结果表明,不同工艺条件下可以制备出不同孔径的泡孔聚合物,加入不同沸点溶剂使得泡孔壁也形成了多孔结构.  相似文献   

16.
By the interaction of a water–glycol solution of poly(ethylene glycol) (PEG) with calcium chloride dihydrate, a gel was produced. It was determined that, below a certain shear rate, this gel is a Newtonian fluid; however, above a certain shear rate, which depends on the gel viscosity, the properties of this gel are anomalous: the gel flow instantaneously completely stops. The viscosity of the gels was found to exponentially increase with increasing concentration of the cross-linking metal at constant PEG concentration. The density of the gels linearly increases with increasing concentration of the cross-linking metal at constant PEG concentration.  相似文献   

17.
The influence of poly(ethylene glycol) on the partition of a charged long chain spin probe between membranes and an external phase is studied. The partition coefficient is derived from the ESR spectra. Membranes of different properties are used (egg lecithin liposomes, erythrocytes) to differentiate between the influence of the external phase and the specific properties of the membrane.The partition coefficient is decreased in an exponential manner on increasing the PEG concentration, which indicates a lowering of the thermodynamic stability of the membranes. The determination of the change in the difference of the chemical potential is dependent on the PEG concentration.The membrane destabilization induced by PEG is caused in an indirect manner by a change of the chemical potential difference as result of the changed water structure and the osmotic pressure, surface tension and hydration of the membrane. This destabilization could be connected with the high fusogenic activity of PEG.  相似文献   

18.
A thermodynamic theory has been developed to define the swelling pressure equilibrium between a homogeneous gel and a pure solvent, where phase transitions of the solvent, such as evaporation and crystallization can occur. It is shown that the equilibrium curve, which describes the temperature dependence of the composition in the gel phase under the condition of a constant swelling pressure, has distinct bends at the transition temperatures. These bends are related to the enthalpies of transition of the pure solvent at the transition temperatures. As a consequence of the phase transition of the solvent the swelling pressure-temperature curve at constant composition of the gel shows a discontinuous behavior at the transition point. Numerical calculations with a modified Flory-Huggins expression, based on results of swelling and deswelling measurements of the system crosslinked PEG/water, are presented.The discussion includes natural systems, which are in the gel state, where water may crystallize in the extracellular space.  相似文献   

19.
An equation which represents the swelling equilibrium of an ionic polymer network in a binary liquid mixture is introduced and evaluated numerically. Discontinuous volume changes are obtained with pertinent values of the parameters. From two types of dependence of the degree of ionic dissociation on the composition of a liquid mixture, two types of volume transitions of an ionic gel are illustrated. One is the transition typically seen in acrylamide gels, and the other is a re-entrant transition typical of isopropylacrylamide gels. The selective dissolution factor of two liquids into a swollen polymer network also becomes discontinuous in accordance with the discontinuous volume change. Transition points and the spinodal line are calculated from a generalized form of the free energy change of the swollen gel system. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The thermodynamic properties are studied for the solutions of charged colloidal particles with ionizable surface groups. The microscopic mechanism of microion binding at surface groups is considered. The free energy of the system in the parameter range where the usual theory of such solutions is inadequate (a range of practical interest) is calculated using the method of the thermodynamic perturbation theory. The first-order phase transition of the liquid–liquid type is shown to be possible; in this phase transition, a phase with a high concentration of colloidal particles that have a higher charge coexists with a phase with a lower concentration of particles that have a lower charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号