首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results are presented for the flow past a stationary square cylinder at zero incidence for Reynolds number, Re ? 150. A stabilized finite‐element formulation is employed to discretize the equations of incompressible fluid flow in two‐dimensions. For the first time, values of the laminar separation Reynolds number, Res, and separation angle, θs, at Res are predicted. Also, the variation of θs with Re is presented. It is found that the steady separation initiates at Re = 1.15. Contrary to the popular belief that separation originates at the rear sharp corners, it is found to originate from the base point, i.e. θs=180° at Re = Res. For Re > 5, θs approaches the limit of 135 °. The length of the separation bubble increases approximately linearly with increasing Re. The drag coefficient varies as Re?0.66. Flow characteristics at Re ? 40 are also presented for elliptical cylinders of aspect ratios 0.2, 0.5, 0.8 and 1 (circle) having the same characteristic dimension as the square and major axis oriented normal to the free‐stream. Compared with a circular cylinder, the flow separates at a much lower Re from a square cylinder leading to the formation of a bigger wake (larger bubble length and width). Consequently, at a given Re, the drag on a square cylinder is more than the drag of a circular cylinder. This suggests that a cylinder with square section is more bluff than the one with circular section. Among all the cylinder shapes studied, the square cylinder with sharp corners generates the largest amount of drag. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Adjoint formulation is employed for the optimal control of flow around a rotating cylinder, governed by the unsteady Navier–Stokes equations. The main objective consists of suppressing Karman vortex shedding in the wake of the cylinder by controlling the angular velocity of the rotating body, which can be constant in time or time‐dependent. Since the numerical control problem is ill‐posed, regularization is employed. An empirical logarithmic law relating the regularization coefficient to the Reynolds number was derived for 60?Re?140. Optimal values of the angular velocity of the cylinder are obtained for Reynolds numbers ranging from Re=60 to Re=1000. The results obtained by the computational optimal control method agree with previously obtained experimental and numerical observations. A significant reduction of the amplitude of the variation of the drag coefficient is obtained for the optimized values of the rotation rate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
In the present work a finite‐difference technique is developed for the implementation of a new method proposed by Aristov and Pukhnachev (Doklady Phys. 2004; 49 (2):112–115) for modeling of the axisymmetric viscous incompressible fluid flows. A new function is introduced that is related to the pressure and a system similar to the vorticity/stream function formulation is derived for the cross‐flow. This system is coupled to an equation for the azimuthal velocity component. The scheme and the algorithm treat the equations for the cross‐flow as an inextricably coupled system, which allows one to satisfy two conditions for the stream function with no condition on the auxiliary function. The issue of singularity of the matrix is tackled by adding a small parameter in the boundary conditions. The scheme is thoroughly validated on grids with different resolutions. The new numerical tool is applied to the Taylor flow between concentric rotating cylinders when the upper and lower lids are allowed to rotate independently from the inner cylinder, while the outer cylinder is held at rest. The phenomenology of this flow is adequately represented by the numerical model, including the hysteresis that takes place near certain specific values of the Reynolds number. Thus, the present results can be construed to demonstrate the viability of the new model. The success can be attributed to the adequate physical nature of the auxiliary function. The proposed technique can be used in the future for in‐depth investigations of the bifurcation phenomena in rotating flows. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In order to study cross flow induced vibration of heat exchanger tube bundles, a new fluid–structure interaction model based on surface vorticity method is proposed. With this model, the vibration of a flexible cylinder is simulated at Re=2.67 × 104, the computational results of the cylinder response, the fluid force, the vibration frequency, and the vorticity map are presented. The numerical results reproduce the amplitude‐limiting and non‐linear (lock‐in) characteristics of flow‐induced vibration. The maximum vibration amplitude as well as its corresponding lock‐in frequency is in good agreement with experimental results. The amplitude of vibration can be as high as 0.88D for the case investigated. As vibration amplitude increases, the amplitude of the lift force also increases. With enhancement of vibration amplitude, the vortex pattern in the near wake changes significantly. This fluid–structure interaction model is further applied to simulate flow‐induced vibration of two tandem cylinders and two side‐by‐side cylinders at similar Reynolds number. Promising and reasonable results and predictions are obtained. It is hopeful that with this relatively simple and computer time saving method, flow induced vibration of a large number of flexible tube bundles can be successfully simulated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
An algorithm based on the finite element modified method of characteristics (FEMMC) is presented to solve convection–diffusion, Burgers and unsteady incompressible Navier–Stokes equations for laminar flow. Solutions for these progressively more involved problems are presented so as to give numerical evidence for the robustness, good error characteristics and accuracy of our method. To solve the Navier–Stokes equations, an approach that can be conceived as a fractional step method is used. The innovative first stage of our method is a backward search and interpolation at the foot of the characteristics, which we identify as the convective step. In this particular work, this step is followed by a conjugate gradient solution of the remaining Stokes problem. Numerical results are presented for:
  • a Convection–diffusion equation. Gaussian hill in a uniform rotating field.
  • b Burgers equations with viscosity.
  • c Navier–Stokes solution of lid‐driven cavity flow at relatively high Reynolds numbers.
  • d Navier–Stokes solution of flow around a circular cylinder at Re=100.
Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
A hybrid finite difference and vortex method (HFDV), based on the domain decomposition method (DDM), is used for calculating the flow around a rotating circular cylinder at Reynolds number Re=1000, 200 and the angular‐to‐rectilinear speed ratio α∈(0.5, 3.25) respectively. A fully implicit third‐order eccentric finite difference scheme is adopted in the finite difference method, and the deduced large broad band sparse matrix equations are solved by a highly efficient modified incomplete LU decomposition conjugate gradient method (MILU‐CG). The long‐time, fully developed features about the variations of the vortex patterns in the wake, as well as the drag and lift forces on the cylinder, are given. The calculated streamline contours are in good agreement with the experimentally visualized flow pictures. The existence of the critical state is confirmed again, and the single side shed vortex pattern at the critical state is shown for the first time. Also, the optimized lift‐to‐drag force ratio is obtained near the critical state. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Flow past a circular cylinder for Re=100 to 107 is studied numerically by solving the unsteady incompressible two‐dimensional Navier–Stokes equations via a stabilized finite element formulation. It is well known that beyond Re ~ 200 the flow develops significant three‐dimensional features. Therefore, two‐dimensional computations are expected to fall well short of predicting the flow accurately at high Re. It is fairly well accepted that the shear layer instability is primarily a two‐dimensional phenomenon. The frequency of the shear layer vortices, from the present computations, agree quite well with the Re0.67 variation observed by other researchers from experimental measurements. The main objective of this paper is to investigate a possible relationship between the drag crisis (sudden loss of drag at Re ~ 2 × 105) and the instability of the separated shear layer. As Re is increased the transition point of shear layer, beyond which it is unstable, moves upstream. At the critical Reynolds number the transition point is located very close to the point of flow separation. As a result, the shear layer eddies cause mixing of the flow in the boundary layer. This energizes the boundary layer and leads to its reattachment. The delay in flow separation is associated with narrowing of wake, increase in Reynolds shear stress near the shoulder of the cylinder and a significant reduction in the drag and base suction coefficients. The spatial and temporal power spectra for the kinetic energy of the Re=106 flow are computed. As in two‐dimensional isotropic turbulence, E(k) varies as k?5/3 for wavenumbers higher than energy injection scale and as k?3 for lower wavenumbers. The present computations suggest that the shear layer vortices play a major role in the transition of boundary layer from laminar to turbulent state. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
This paper considers numerical simulation of time‐dependent non‐linear partial differential equation resulting from a single non‐linear conservation law in h, p, k mathematical and computational framework in which k=(k1, k2) are the orders of the approximation spaces in space and time yielding global differentiability of orders (k1?1) and (k2?1) in space and time (hence k‐version of finite element method) using space–time marching process. Time‐dependent viscous Burgers equation is used as a specific model problem that has physical mechanism for viscous dissipation and its theoretical solutions are analytic. The inviscid form, on the other hand, assumes zero viscosity and as a consequence its solutions are non‐analytic as well as non‐unique (Russ. Math. Surv. 1962; 17 (3):145–146; Russ. Math. Surv. 1960; 15 (6):53–111). In references (Russ. Math. Surv. 1962; 17 (3):145–146; Russ. Math. Surv. 1960; 15 (6):53–111) authors demonstrated that the solutions of inviscid Burgers equations can only be approached within a limiting process in which viscosity approaches zero. Many approaches based on artificial viscosity have been published to accomplish this including more recent work on H(Div) least‐squares approach (Commun. Pure Appl. Math. 1965; 18 :697–715) in which artificial viscosity is a function of spatial discretization, which diminishes with progressively refined discretizations. The thrust of the present work is to point out that: (1) viscous form of the Burgers equation already has the essential mechanism of viscosity (which is physical), (2) with progressively increasing Reynolds (Re) number (thereby progressively reduced viscosity) the solutions approach that of the inviscid form, (3) it is possible to compute numerical solutions for any Re number (finite) within hpk framework and space–time least‐squares processes, (4) the space–time residual functional converges monotonically and that it is possible to achieve the desired accuracy, (5) space–time, time marching processes utilizing a single space–time strip are computationally efficient. It is shown that viscous form of the Burgers equation without linearizing provides a physical and viablemechanism for approaching the solutions of inviscid form with progressively increasing Re. Numerical studies are presented and the computed solutions are compared with published work. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A direct numerical scheme is developed to study the temporal amplification of a 2D disturbance in plane Poiseuille flow. The transient non-linear Navier–Stokes equations are applied in a region of wavelength moving with the wave propagation speed. The complex amplitude involved in the perturbation functions is considered as the initial input of the non-linear stability equations. In this study a fully implicit finite difference scheme with five points in the flow direction and three points in the normal direction is developed so that numerical simulation of the amplification of a two-dimensional temporal disturbance in plane Poiseuille flow can be investigated. The growth and decay of the disturbance with time are presented and neutral stability curves which are in good agreement with existing solutions can be determined. The critical conditions as a function of the amplitude A0 of the disturbance are presented. Fixing the wavelength, the Navier–Stokes equations are solved up to Re=10,000 a friction factor increasing with Reynolds number is observed. The 2D non-linear behaviour of the streamfunction, vorticity and velocity components at Re=10,000 are also exhibited. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
A numerical simulation is performed to investigate the flow induced by a sphere moving along the axis of a rotating cylindrical container filled with the viscous fluid. Three‐dimensional incompressible Navier–Stokes equations are solved using a finite element method. The objective of this study is to examine the feature of waves generated by the Coriolis force at moderate Rossby numbers and that to what extent the Taylor–Proudman theorem is valid for the viscous rotating flow at small Rossby number and large Reynolds number. Calculations have been undertaken at the Rossby numbers (Ro) of 1 and 0.02 and the Reynolds numbers (Re) of 200 and 500. When Ro=O(1), inertia waves are exhibited in the rotating flow past a sphere. The effects of the Reynolds number and the ratio of the radius of the sphere and that of the rotating cylinder on the flow structure are examined. When Ro ? 1, as predicted by the Taylor–Proudman theorem for inviscid flow, the so‐called ‘Taylor column’ is also generated in the viscous fluid flow after an evolutionary course of vortical flow structures. The initial evolution and final formation of the ‘Taylor column’ are exhibited. According to the present calculation, it has been verified that major theoretical statement about the rotating flow of the inviscid fluid may still approximately predict the rotating flow structure of the viscous fluid in a certain regime of the Reynolds number. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
A computational study is performed on two-dimensional mixed convection in an annulus between a horizontal outer cylinder and a heated, rotating, eccentric inner cylinder. The computation has been done using a non-orthogonal grid and a fully collocated finite volume procedure. Solutions are iterated to convergence through a pressure correction scheme and the convection is treated by Van Leer's MUSCL scheme. The numerical procedure adopted here can easily eliminate the ‘Numerical leakage’ phenomenon of the mixed convection problem whereby strong buoyancy and centrifugal effects are encountered in the case of a highly eccentric annulus. Numerical results have been obtained for Rayleigh number Ra ranging from 7×103 to 107, Reynolds number Re from 0 to 1200 and Prandtl number Pr from 0.01 to 7. The mixed rotation parameter σ (=Ra/PrRe2) varies from ∞ (pure natural convection) to 0.01 with various eccentricities ε. The computational results are in good agreement with previous works which show that the mixed convection heat transfer characteristics in the annulus are significantly affected by σ and ε. The results indicate that the mean Nusselt number Nu increases with increasing Ra or Pr but decreases with increasing Re. In the case of a highly eccentric annulus the conduction effect becomes predominant in the throat gap. Hence the crucial phenomenon on whereby Nu first decreases and then increases can be found with increasing eccentricity. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
This paper describes the finite difference numerical procedure for solving velocity–vorticity form of the Navier–Stokes equations in three dimensions. The velocity Poisson equations are made parabolic using the false‐transient technique and are solved along with the vorticity transport equations. The parabolic velocity Poisson equations are advanced in time using the alternating direction implicit (ADI) procedure and are solved along with the continuity equation for velocities, thus ensuring a divergence‐free velocity field. The vorticity transport equations in conservative form are solved using the second‐order accurate Adams–Bashforth central difference scheme in order to assure divergence‐free vorticity field in three dimensions. The velocity and vorticity Cartesian components are discretized using a central difference scheme on a staggered grid for accuracy reasons. The application of the ADI procedure for the parabolic velocity Poisson equations along with the continuity equation results in diagonally dominant tri‐diagonal matrix equations. Thus the explicit method for the vorticity equations and the tri‐diagonal matrix algorithm for the Poisson equations combine to give a simplified numerical scheme for solving three‐dimensional problems, which otherwise requires enormous computational effort. For three‐dimensional‐driven cavity flow predictions, the present method is found to be efficient and accurate for the Reynolds number range 100?Re?2000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
A mathematical and numerical formulation is derived for fluid/structure interaction problems involving arbitrary geometries relevant to the simulation of bridge deck instabilities due to cross winds. A translating and rotating moving frame of reference is attached to the body to utilize an efficient fixed mesh spectral/hp element solver. The formulation is validated against experiments with flow simulations of circular cylinders at Reynolds numbers of 100–400 undergoing free and forced motion in the transverse and in‐line directions. The well‐documented phenomena of vortex lock‐in is captured. The formulation is then applied a rectangular body at Re=250 under forced and free motion the latter of which demonstrates torsional galloping. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents results obtained by employing a modified Galerkin finite element method to analyse the steady state flow of a fluid contained between two concentric, rotating spheres. The spheres are assumed to be rigid and the cavity region between the spheres is filled with an incompressible, viscous, Newtonian fluid. The inner sphere is constrained to rotate about a vertical axis with a prescribed angular velocity, while the outer sphere is fixed. Results for the circumferential function Ω, streamfunction ψ, vorticity function ζ and inner boundary torque T1 are presented for Reynolds numbers Re ? 2000 and radius ratios 0.1 ? α ? 0.9. The method proved effective for obtaining results for a wide range of radius ratios (0.1 ? α ? 0.9) and Reynolds numbers (0 ? Re ? 2000). Previous investigators who employed the finite difference method experienced difficulties in obtaining results for cases with radius ratios α ? 0.2, except for small Reynolds numbers (Re ? 100). Results for Ω, Ψ, ζ and T1 obtained in this study for radius ratios 0.8 ≤ α ≤ 0.9 verified the development of Taylor vortices reported by other investigators. The research indicates that the method may be useful for analysing other non-linear fluid flow problems.  相似文献   

15.
For the incompressible Navier–Stokes equations, vorticity‐based formulations have many attractive features over primitive‐variable velocity–pressure formulations. However, some features interfere with the use of the numerical methods based on the vorticity formulations, one of them being the lack of a boundary conditions on vorticity. In this paper, a novel approach is presented to solve the velocity–vorticity integro‐differential formulations. The general numerical method is based on standard finite volume scheme. The velocities needed at the vertexes of each control volume are calculated by a so‐called generalized Biot–Savart formula combined with a fast summation algorithm, which makes the velocity boundary conditions implicitly satisfied by maintaining the kinematic compatibility of the velocity and vorticity fields. The well‐known fractional step approaches are used to solve the vorticity transport equation. The paper describes in detail how we accurately impose no normal‐flow and no tangential‐flow boundary conditions. We impose a no‐flux boundary condition on solid objects by the introduction of a proper amount of vorticity at wall. The diffusion term in the transport equation is treated implicitly using a conservative finite update. The diffusive fluxes of vorticity into flow domain from solid boundaries are determined by an iterative process in order to satisfy the no tangential‐flow boundary condition. As application examples, the impulsively started flows through a flat plate and a circular cylinder are computed using the method. The present results are compared with the analytical solution and other numerical results and show good agreement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
A semi‐implicit, semi‐Lagrangian, mixed finite difference–finite volume model for the shallow water equations on a rotating sphere is introduced and discussed. Its main features are the vectorial treatment of the momentum equation and the finite volume approach for the continuity equation. Pressure and Coriolis terms in the momentum equation and velocity in the continuity equation are treated semi‐implicitly. Moreover, a splitting technique is introduced to preserve symmetry of the numerical scheme. An alternative asymmetric scheme (without splitting) is also introduced and the efficiency of both is discussed. The model is shown to be conservative in geopotential height and unconditionally stable for 0.5≤θ≤1. Numerical experiments on two standard test problems confirm the performance of the model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
The Navier–Stokes equations, which are the governing equations for a steady, viscous, incompressible fluid rotating about the z-axis with angular velocity ω, are linearized using the Oseen approximation. Two parameters, namely the Reynolds number Re = Ua/v and Reω = 2ωa2/v (the Reynolds number w.r.t. rotation), enter the linearized equations. These equations are solved by the Peaceman–Rachford ADI method and the resulting algebraic equations are solved by the SOR method. Streamlines are plotted and compared with the Oseen solution for the non-rotating case. The magnitude of the vorticity vector with increasing θ is also plotted.  相似文献   

18.
The global linear stability analysis (LSA) of stationary/steady flows has been applied to various flows in the past and is fairly well understood. The LSA of time‐averaged flows is explored in this paper. It is shown that the LSA of time‐averaged flows can result in useful information regarding its stability. The method is applied to study flow past a cylinder at Reynolds number (Re) beyond the onset of vortex shedding. Compared with the direct numerical simulation, LSA of the Re=100 steady flow severely underpredicts the vortex shedding frequency. However, the LSA of the time‐averaged flow results in the correct value of the non‐dimensional frequency, St, of the associated instability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The two‐dimensional time‐dependent Navier–Stokes equations in terms of the vorticity and the stream function are solved numerically by using the coupling of the dual reciprocity boundary element method (DRBEM) in space with the differential quadrature method (DQM) in time. In DRBEM application, the convective and the time derivative terms in the vorticity transport equation are considered as the nonhomogeneity in the equation and are approximated by radial basis functions. The solution to the Poisson equation, which links stream function and vorticity with an initial vorticity guess, produces velocity components in turn for the solution to vorticity transport equation. The DRBEM formulation of the vorticity transport equation results in an initial value problem represented by a system of first‐order ordinary differential equations in time. When the DQM discretizes this system in time direction, we obtain a system of linear algebraic equations, which gives the solution vector for vorticity at any required time level. The procedure outlined here is also applied to solve the problem of two‐dimensional natural convection in a cavity by utilizing an iteration among the stream function, the vorticity transport and the energy equations as well. The test problems include two‐dimensional flow in a cavity when a force is present, the lid‐driven cavity and the natural convection in a square cavity. The numerical results are visualized in terms of stream function, vorticity and temperature contours for several values of Reynolds (Re) and Rayleigh (Ra) numbers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The receptivity of the separated shear layer for Re = 300 flow past a cylinder is investigated by forced excitation via an unsteady inflow. In order to isolate the shear layer instability, a numerical experiment is set up that suppresses the primary wake instability. Computations are carried out for one half of the cylinder, in two dimensions. The flow past half a cylinder with steady inflow is found to be stable for Re = 300. However, an inlet flow with pulsatile perturbations, of amplitude 1% of the mean, results in the excitation of the shear layer mode. The frequency of the perturbation of the inlet flow determines the frequency associated with the shear layer vortices. For a certain range of forced frequencies the recirculation region undergoes a low‐frequency longitudinal contraction and expansion. An attempt is made to relate this instability to a global mode of the wake determined from a linear stability analysis. Interestingly, this phenomenon disappears when the outflow boundary of the computational domain is shifted sufficiently downstream. This study demonstrates the need of carefully investigating the effect of the location of outflow boundaries if the computational results indicate the presence of low‐frequency fluctuations. The effect of Re and amplitude of unsteadiness at the inlet are also presented. All computations have been carried out using a stabilized finite element formulation of the incompressible flow equations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号