首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ε‐Caprolactone (ε‐CL) has been mixed with ZnCl2 at different mol ratios. The resulting complex was characterized through 1H and 13C NMR spectroscopy in bulk and in solutions, differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and optical microscopy. Ring‐opening polymerization of ε‐caprolactone [M] using ZnCl2 as an initiator [I] at different monomer/initiator ratios has been successfully performed in xylene. The molecular weight of poly(ε‐caprolactone) (PCL) as measured by gel permeation chromatografy (GPC) was found to depend linearly on the [M]/[I] ratio. Theoretical calculations were carried out to understand the geometry of the complex and the operating ring‐opening mechanism. Both experimental and computational results and the presence of methylene–chloride end group, confirmed by NMR, are in agreement with a coordination–insertion mechanism for the ring‐opening polymerization proposed in this article. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1355–1365, 2000  相似文献   

2.
A series of rigid‐rod polyamides and polyimides containing p‐terphenyl or p‐quinquephenyl moieties in backbone as well as naphthyl pendent groups were synthesized from two new aromatic diamines. The polymers were characterized by inherent viscosity, elemental analysis, FT‐IR, 1H‐NMR, 13C‐NMR, X‐ray, differential scanning calorimetry (DSC), thermomechanical analysis (TMA), thermal gravimetric analysis (TGA), isothermal gravimetric analysis, and moisture absorption. All polymers were amorphous and displayed Tg values at 304–337°C. Polyamides dissolved upon heating in polar aprotic solvents containing LiCl as well as CCl3COOH, whereas polyimides were partially soluble in these solvents. No weight loss was observed up to 377–422°C in N2 and 355–397°C in air. The anaerobic char yields were 57–69% at 800°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 15–24, 1999  相似文献   

3.
The new monomer N′‐(β‐methacryloyloxyethyl)‐2‐pyrimidyl‐(p‐benzyloxy‐ carbonyl)aminobenzenesulfonamide (MPBAS) (M1) is synthesized using sulfadiazine as parent compound. It could be homopolymerized and copolymerized with N‐phenyl maleimide (NPMI) (M2) by radical mechanism using AIBN as initiator at 60 °C in dimethylformamide. The new monomer MPBAS and polymers were identified by IR, element analysis and 1H NMR in detail. The monomer reactivity ratios in copolymerization were determined by YBR method, and r1 (MPBAS) = 2.39 ± 0.05, r2 (NPMI) = 0.33 ± 0.02. In the presence of ammonium formate, benzyloxycarbonyl groups could be broken fluently from MPBAS segments of copolymer by catalytic transfer hydrogenation, and the copolymer with sulfadiazine side groups are recovered. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2548–2554, 2000  相似文献   

4.
A novel segmented block copolymer, containing polyethylene glycol segment and GlyAlaGlyAla sequence derived from B. mori silk, has been prepared as a model for silk‐based materials using both solution and interfacial techniques. Inherent viscosity, size exclusion chromatography, and light‐scattering measurements gave molecular weight between Mw 34,000–39,000. Evidence for phase separation was provided by differential scanning calorimetry, which gave two Tg's at −57 °C and 111 °C, and transmission electron microscopy, which showed a morphology in which the peptide domain, estimated to be about 20–50 nm, was dispersed in the continuous polyether phase. Solid‐state FTIR spectroscopic results showed that the polymer contained both parallel and antiparallel β‐sheet stacks, and that the solution‐polymerized material has the higher β‐sheet content. This was further confirmed by 13C NMR, which gave about 80% total β‐sheet content for the solution‐polymerized product and about 40% for the polymer obtained by interfacial polymerization. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 352–366, 2000  相似文献   

5.
tert‐Butyl, cyclohexyl, n‐propyl, and n‐dodecyl vinyl ethers have been used as comonomers with styrene and methyl methacrylate using 13C‐enriched samples of azobis(isobutyronitrile) and benzoyl peroxide as initiators at 60°C. Examination by 13C‐NMR spectroscopy of either (13CH3)2C(CN) or Ph13COO end‐groups in the products has shown that the vinyl ethers have low reactivities toward the 2‐cyano‐2‐propyl radical but high reactivities toward the benzoyloxy radical. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 771–777, 1999  相似文献   

6.
Polyimide copolymers containing 2,2′‐bipyridine were synthesized and characterized. The glass‐transition temperatures (Tg's) of the polymers ranged from 260 to 300 °C. In contrast to most known organic chromophore‐containing polyimides, the polyimide copolymers in this study showed elevated Tg's (270–320 °C) after coordination with nickel malenonitriledithiolate inorganic chromophores. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 498–503, 2000  相似文献   

7.
New functional monomer methacryloyl isocyanate containing 4‐chloro‐1‐phenol (CPHMAI) was prepared on reaction of methacryloyl isocyanate (MAI) with 4‐chloro‐1‐phenol (CPH) at low temperature and was characterized with IR, 1H, and 13C‐NMR spectra. Radical polymerization of CPHMAI was studied in terms of the rate of polymerization, solvent effect, copolymerization, and thermal properties. The rate of polymerization of CPHMAI has been found to be smaller than that of styrene under the same conditions. Polar solvents such as dimethylsulfoxide (DMSO) and N,N‐dimethyl formamide (DMF) were found to slow the polymerization. Copolymerization of CPHMAI (M1) with styrene (M2) in tetrahydrofuran (THF) was studied at 60°C. The monomer reactivity ratio was calculated to be r1 = 0.49 and r2 = 0.66 according to the method of Fineman—Ross. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 469–473, 2000  相似文献   

8.
The cationic ring‐opening polymerization of 2‐methyl‐2‐oxazoline and 2‐phenyl‐2‐oxazoline was efficiently used using bis(η5‐cyclopentadienyl)dimethyl zirconium, Cp2ZrMe2, or bis(η5tert‐butyl‐cyclopentadienyl)dimethyl hafnium in combination with either tris(pentafluorophenyl)borate or tetrakis(pentafluorophenyl)borate dimethylanilinum salt as initiation systems. The evolution of polymer yield, molecular weight, and molecular weight distribution with time was examined. In addition, the influence of the initiation system and the monomer on the control of the polymerization was studied. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 000: 000–000, 2011  相似文献   

9.
The synthesis of two new isomeric monomers, cis‐(2‐cyclohexyl‐1,3‐dioxan‐5‐yl) methacrylate (CCDM) and trans‐(2‐cyclohexyl‐1,3‐dioxan‐5‐yl) methacrylate (TCDM), starting from the reaction of glycerol and cyclohexanecarbaldehyde, is reported. The process involved the preparation of different alcohol acetals and esterification with methacryloyl chloride of the corresponding cis and trans 5‐hydroxy compounds of 2‐cyclohexyl‐1,3‐dioxane. The radical polymerization reactions of both monomers, under the same conditions of temperature, solvent, monomer, and initiator concentrations, were studied to investigate the influence of the monomer configuration on the values of the propagation and termination rate constants (kp and kt ).The values of the ratio kp /kt 1/2 were determined by UV spectroscopy by the measurement of the changes of absorbance with time at several wavelengths in the range 275–285 nm, where an appropriate change in absorbance was observed. Reliable values of the kinetics constants were determined by UV spectroscopy, showing a very good reproducibility of the kinetic experiments. The values of kp /kt 1/2, in the temperature interval 45–65 °C, lay in the range 0.40–0.50 L1/2/mol1/2s1/2 and 0.20–0.30 L1/2/mol1/2s1/2 for CCDM and TCDM, respectively. Measurements of both the radical concentrations and the absolute rate constants kp and kt were also carried out with electron paramagnetic resonance techniques. The values of kp at 60 °C were nearly identical for both the trans and cis monomers, but the termination rate constant of the trans monomer was about three times that of the cis monomer at the same temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3883–3891, 2000  相似文献   

10.
The radical ring‐opening copolymerization of 2‐isopropenyl‐3‐phenyloxirane (1) with styrene (St) was examined to obtain the copolymer [copoly(1‐St)] with a vinyl ether moiety in the main chain. The copolymers were obtained in moderate yields by copolymerization in various feed ratios of 1 and St over 120 °C; the number‐average molecular weights (Mn) were estimated to be 1800–4200 by gel permeation chromatography analysis. The ratio of the vinyl ether and St units of copoly(1‐St) was estimated with the 1H NMR spectra and varied from 1/7 to 1/14 according to the initial feed ratio of 1 and St. The haloalkoxylation of copoly(1‐St) with ethylene glycol in the presence of N‐chlorosuccinimide produced a new copolymer with alcohol groups and chlorine atoms in the side group in a high yield. The Mn value of the haloalkoxylated polymer was almost the same as that of the starting copoly(1‐St). The incorporated halogen was determined by elemental analysis. The analytical result indicated that over 88% of the vinyl ether groups participated in the haloalkoxylation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3729–3735, 2000  相似文献   

11.
The polymerization of α‐N‐(α′‐methylbenzyl) β‐ethyl itaconamate derived from racemic α‐methylbenzylamine (RS‐MBEI) by initiation with dimethyl 2,2′‐azobisisobutyrate (MAIB) was studied in methanol kinetically and with ESR spectroscopy. The overall activation energy of polymerization was calculated to be 47 kJ/mol, a very low value. The polymerization rate (Rp ) at 60 °C was expressed by Rp = k[MAIB]0.5±0.05[RS‐MBEI]2.9±0.1. The rate constants of propagation (kp ) and termination (kt ) were determined by ESR. kp was very low, ranging from 0.3 to 0.8 L/mol s, and increased with the monomer concentration, whereas kt (4–17 × l04 L/mol s) decreased with the monomer concentration. Such behaviors of kp and kt were responsible for the high dependence of Rp on the monomer concentration. Rp depended considerably on the solvent used. S‐MBEI, derived from (S)‐α‐methylbenzylamine, showed somewhat lower homopolymerizability than RS‐MBEI. The kp value of RS‐MBEI at 60 °C in benzene was 1.5 times that of S‐MBEI. This was explicable in terms of the different molecular associations of RS‐MBEI and S‐MBEI, as analyzed by 1H NMR. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4137–4146, 2000  相似文献   

12.
A series of 1‐(2,6‐dibenzhydryl‐4‐fluorophenylimino)‐ 2‐aryliminoacenaphthylene derivatives ( L1–L5 ) and their halonickel complexes LNiX2 (X = Br, Ni1–Ni5 ; X = Cl, Ni6–Ni10 ) are synthesized and well characterized. The molecular structures of representative complexes Ni2 and Ni4 are confirmed as the distorted tetrahedron geometry around nickel atom by the single crystal X‐ray diffraction. Upon activation with methylaluminoxane, all nickel complexes show high activities up to 1.49 × 107 g of PE (mol of Ni)?1 h?1 toward ethylene polymerization, producing polyethylenes with high branches and molecular weights up to 1.62 × 106 g mol?1 as well as narrow polydispersity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1369–1378  相似文献   

13.
Six 4‐alkyl‐4‐azaheptane‐1,7‐diamines, characterized as their solid bis(D ‐gluconamides), were prepared in a two‐step synthesis: bis(cyanoethylation) of the primary alkylamines (C8–C18, even‐numbered) followed by an efficient lithium aluminum hydride reduction of the resulting bisnitriles. The azadiamines were then used as monomers in condensation polymerizations with methyl D ‐glucarate 1,4‐lactone in a methanol solution, yielding polyhydroxypolyaminopolyamides isolated directly as white solids with varying hydrophobic/hydrophilic character. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3892–3899, 2000  相似文献   

14.
The copolymerization of racemic β‐butyrolactone (rac‐BLMe) with racemic “allyl‐β‐butyrolactone” (rac‐BLallyl) in toluene, catalyzed by the discrete amino‐alkoxy‐bis(phenolate) yttrium‐amido complex 1 , gave new poly(β‐hydroxyalkanoate)s with unsaturated side chains. The poly(BLMeco‐BLallyl) copolymers produced have a highly syndiotactic backbone structure (Pr = 0.80–0.84) with a random enchainment of monomer units, as evidenced by 13C NMR, and high molecular weight (Mn up to 58,000 g mol?1) with a narrow polydispersity (Mw/Mn = 1.07–1.37), as determined by GPC. The comonomer incorporation (5–50 mol % rac‐BLallyl) was a linear function of the feed ratio. The pendant vinyl bond of the side‐chains in those poly(BLMeco‐BLallyl) copolymers allowed the effective introduction of hydroxy or epoxy groups via dihydroxylation, hydroboration‐oxidation or epoxidation reactions. NMR studies indicated that all of these transformations proceed in an essentially quantitative conversion and do not affect the macromolecular architecture. Some thermal properties (Tm, ΔHm, Tg) of the prepared polymers have been also evaluated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3177–3189, 2009  相似文献   

15.
Polymerizations of higher α‐olefins, 1‐pentene, 1‐hexene, 1‐octene, and 1‐decene were carried out at 30 °C in toluene by using highly isospecific rac‐Me2Si(1‐C5H2‐2‐CH3‐4‐t Bu)2Zr(NMe2)2 (rac‐1) compound in the presence of Al(iBu)3/[CPh3][B(C6F5)4] as a cocatalyst formulation. Both the bulkiness of monomer and the lateral size of polymer influenced the activity of polymerization. The larger lateral of polymer chain opens the π‐ligand of active site wide and favors the insertion of monomer, while the large size of monomer inserts itself into polymer chain more difficultly due to the steric hindrance. Highly isotactic poly(α‐olefin)s of high molecular weight (MW) were produced. The MW decreased from polypropylene to poly(1‐hexene), and then increased from poly(1‐hexene) to poly(1‐decene). The isotacticity (as [mm] triad) of the polymer decreased with the increased lateral size in the order: poly(1‐pentene) > poly(1‐hexene) > poly(1‐octene) > poly(1‐decene). The similar dependence of the lateral size on the melting point of polymer was recorded by differential scanning calorimetry (DSC). 1H NMR analysis showed that vinylidene group resulting from β‐H elimination and saturated methyl groups resulting from chain transfer to cocatalyst are the main end groups of polymer chain. The vinylidene and internal double bonds are also identified by Raman spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1687–1697, 2000  相似文献   

16.
The polysilanes [RMe2Si(CH2)x(Me)Si]n [x = 2, 3; R = 2‐Fu ( 1, 2 ), 5‐Me‐2‐Fu ( 3, 4 )] bearing furyl‐substituted carbosilyl side chains have been synthesized by dehalocondensation reaction (Wurtz coupling) of the corresponding carbosilanes using sodium dispersion in refluxing toluene. On the other hand, analogous polysilanes with appended thienyl groups [x = 2, 3; R = 2‐Th ( 5, 6 ), 4‐Me‐2‐Th ( 7, 8 )] are only accessible by the reaction of the corresponding carbosilane precursors under mild Wurtz coupling conditions (THF, RT). These polysilanes reveal monomodal molecular weight distribution with Mw/PDI = 3.3–5.4 × 104/1.22–1.47 ( 1–4 ) and 9.1–14.4 × 104/1.45–1.61 ( 5–8 ) and are characterized by FT‐IR, multinuclear (1H, 13C{1H}, 29Si{1H}) NMR, and UV/PL spectral studies as well as thermogravimetric analysis (TGA). Preliminary studies on the reactivity of polysilane 2 with palladium acetate (toluene, RT) reveal the formation of spherical palladium nanoparticles of size 8.2 ± 0.6 nm, which remain stable in solution for several weeks. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7816–7826, 2008  相似文献   

17.
Nonporous hydrogel microspheres 0.1–1.3 μm in diameter were prepared by the dispersion copolymerization of 1‐vinyl‐2‐pyrrolidone and ethylene dimethacrylate as a crosslinking agent. The crosslinking was evidenced by solid state 13C NMR and elemental analysis. The effect of various parameters including selection of solvent (cyclohexane, butyl acetate), initiator (4,4′‐azobis(4‐cyanopentanoic acid), 2,2′‐azobisisobutyronitrile, dibenzoyl peroxide) and stabilizer on the properties of resulting microspheres has been studied. Dynamic light scattering and photographic examination were used for determination of the diameter and polydispersity of microspheres. Increasing concentration of steric stabilizer in the initial polymerization mixture decreased the particle size. The particle size depended on the molecular weight of polystyrene‐block‐hydrogenated polyisoprene stabilizer, but not on the number of PS and polybutadiene blocks in the styrene–butadiene block copolymer stabilizers. Dibenzoyl peroxide used as an initiator resulted in agglomeration of particles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 653–663, 2000  相似文献   

18.
The half‐titanocene (η5‐pentamethylcyclopentadienyl)tribenzyl titanium (Cp*TiBz3) with methylaluminoxane (MAO) as the cocatalyst was employed to catalyze propene polymerization at ambient pressure. A novel atactic polypropene elastomer with a high molecular weight (w = 2 − 8 × 105) was produced. The effects of the polymerization conditions on the catalytic activity and polymer molecular weight are discussed. 13C NMR analysis confirmed that the catalyst system Cp*TiBz3/MAO produced atactic polypropenes, and the polymerization mechanism was in agreement with the Bernoullian process. The triad sequence distribution of the polymer was measured and found to be as follows: mm = 6.15%, mr = 40.87%, and rr = 52.98% (Bernoullian factor B = 1.03); this indicated that the insertion of propene with the catalyst system followed a chain‐end control model. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 411–415, 2000  相似文献   

19.
The syndiotactic polystyrene polymerization activity of a fluorinated half‐sandwich complex, η5‐pentamethylcyclopentadienyl titanium trifluoride (Cp*TiF3), in the presence of relatively low amounts of methylalumoxane (MAO; MAO/Cp*TiF3 molar ratio = 200/1) and triisobutylaluminum, is significantly increased by the addition of phenylsilane in molar ratios to Cp*TiF3 ranging from about 300/1 to 600/1, if the phenylsilane is added to the monomer. Lower amounts of phenylsilane, such as a 100/1 molar ratio to Cp*TiF3, lead to a reduced polymerization activity in comparison with styrene without phenylsilane. A prereaction of phenylsilane with the catalyst mixture shows a behavior that is strongly dependent on the storage time of the composition and the temperature. A storage time of about 16 h is sufficient to reduce the polymerization conversion to about half of the original value. The results are discussed on the basis of a chain‐transfer reaction with phenylsilane and several catalyst complexes of different stabilities and activities, including an alkylation product of phenylsilane. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3476–3485, 2000  相似文献   

20.
In this study, the homopolymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and its copolymerizations with ε‐caprolactone (CL) were carried out in detail using the isothiourea‐based Lewis pairs comprised 2,3,6,7‐tetrahydro‐5H‐thiazolo(3,2‐a)pyrimidine and magnesium halides (MgX2) with benzyl alcohol (BnOH) as the initiator. The copolymerization of DTC and CL via one‐pot addition produced randomly sequenced copolymers. On the other hand, a well‐defined linear poly(ε‐caprolactone)–block–poly(2,2‐dimethyltrimethylene carbonate) (PCL‐b‐PDTC) diblock copolymer was prepared by simple sequential ring‐opening polymerization of CL and DTC. In addition, poly(ω‐pentadecalactone)–block–PDTC diblock copolymer was successfully prepared by the same strategy. Moreover, PDTC–poly(ethylene glycol) (PEG)–PDTC triblock copolymer was synthesized in the presence of PEG 2000. The effects of different polymerization conditions on the polymerization reactions have been systematically discussed. The resulting polymers were characterized by the 1H and 13C NMR spectra, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐ToF MS). The block copolyester structures were confirmed by the 13C NMR spectroscopy and DSC characterizations. These results indicated that the supposed mechanism was a dual catalytic mechanism. The proposed mechanism involved activation of the monomer via coordination to the MgX2, and the initiator alcohol was deprotonated by base. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2349–2355  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号