首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystal unit‐cell structures and the isothermal crystallization kinetics of poly(L ‐lactide) in biodegradable poly(L ‐lactide)‐block‐methoxy poly(ethylene glycol) (PLLA‐b‐MePEG) diblock copolymers have been analyzed by wide‐angle X‐ray diffraction and differential scanning calorimetry. In particular, the effects due to the presence of MePEG that is chemically connected to PLLA as well as the PLLA crystallization temperature TC are examined. Though we observe no variation of both the PLLA and MePEG crystal unit‐cell structures with the block ratio between PLLA and MePEG and TC, the isothermal crystallization kinetics of PLLA is greatly influenced by the presence of MePEG that is connected to it. In particular, the equilibrium melting temperature of PLLA, T, significantly decreases in the diblock copolymers. When the TC is high so that the crystallization is controlled by nucleation, because of the decreasing T and thereafter the nucleation density with decreasing PLLA molecular weight, the crystallinity of PLLA also decreases with a decrease in the PLLA molecular weight. While, for the lower crystallization temperature regime controlled by the growth mechanism, the crystallizability of PLLA in copolymers is greater than that of pure PLLA. This suggests that the activation energy for the PLLA segment diffusing to the crystallization site decreases in the diblocks. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2438–2448, 2006  相似文献   

2.
Compatibility of crystalline/crystalline polypropylene (PP)/poly(butene‐1) (PB‐1) blends was investigated via the method of equilibrium melting temperature depression followed by determining the polymer–polymer interaction parameter (χ) using the Nishi–Wang equation. The composition variation of the equilibrium melting temperatures of blends (T) was determined with the Hoffman–Weeks plot. The T and its variation with the blend composition depended on the crystallization temperature range. The morphological effect of the blend composition was not a contribution factor for the T depressions of PP and PB‐1 in the blends. The interplay of the dilution effect and molecular fractionation effect of the amorphous component on crystallization of the crystalline component in the blends governed the relation of T with the blend composition. The calculated χ values were negative depending on the blend composition. The negative χ values suggested that PP and PB‐1 in the amorphous region were compatible. The composition variation of the χ values was attributed to the molecular fractionation effect during crystallization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 638–648, 2002; DOI 10.1002/polb.10125  相似文献   

3.
Orientation angle and stress‐relaxation dynamics of entangled polystyrene (PS)/diethyl phthalate solutions were investigated in steady and step shear flows. Concentrated (19 vol %) solutions of 0.995, 1.81, and 3.84 million molecular weight (MW) PS and a semidilute (6.4 vol %) solution of 20.6 million MW PS were used to study the effects of entanglement loss on dynamics. A phase‐modulated flow birefringence apparatus was developed to facilitate measurements of time‐dependent changes in optical equivalents of shear stress (n12 ≈ Cσ) and first normal stress differences (n1 = n11 ? n22 ≈ CN1) in a planar‐Couette shear‐flow geometry. Flow birefringence results were supplemented with cone‐and‐plate mechanical rheometry measurements to extend the range of shear rates over which entangled polymer dynamics are studied. In slow > ) steady shear‐flow experiments using the ultrahigh MW polymer sample (20.6 × 106 MW PS), steady‐state n12 and n1 results manifest unusual power‐law dependencies on shear rate [n12,ss 0.4 and n1,ss 0.8]. At shear rates in the range τ < < τ, steady‐state orientation angles χSS are found to be nearly independent of shear rate for all but the most weakly entangled materials investigated. For solutions containing the highest MW PS, an approximate plateau orientation angle χp in the range 20–24° is observed; χp values ranging from 14 to 16° are found for the other materials. In the start‐up of fast steady shear flow ˙ ≥ τ), transient undershoots in orientation angle are also reported. The molecular origins of these observations were examined with the help of a tube model theory that accommodates changes in polymer entanglement density during flow. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2275–2289, 2001  相似文献   

4.
Monodisperse porous particles of poly(divinylbenzene) prepared by the activated swelling method have been investigated by solid‐state 13C crosspolarization magic‐angle spinning (CPMAS) nuclear magnetic resonance (NMR) relaxation measurements. Homopolymeric combinations of two porogens (toluene and 2‐ethylhexanoic acid) and two monomers (meta‐ and para‐divinylbenzene) were studied. Residual vinyl groups were systematically reacted with increasing amounts of bromine, producing 20 different polymers samples for which we measured crosspolarization times, TCH, proton rotating frame spin‐lattice relaxation, T, 13C spin‐lattice relaxation, T, and proton spin‐lattice relaxation, T. These parameters were chosen to reflect expected changes in a wide range of frequencies of motion as a function of structure. Relative differences in the molecular mobility of the major functional groups (aromatic, vinyl and aliphatic) is related to initial reactants used, vinyl concentration, relative reactivity of vinyl groups, distribution of vinyl groups, pore structure, and degree of crosslinking. Variable temperature 1H combined rotation and multiple pulse NMR (CRAMPS) was used to derive activation energies for selected samples via measurement of the proton spin‐lattice relaxation time, T. Irreversible thermal effects were observed in ambient temperature relaxation after heating to temperatures in the range of 393–418 K. Simple univariate statistical analyses failed to reveal consistent correlations among the known variables. However, the application of more sophisticated multivariate and neural network analyses allowed excellent structure–property predictions to be made from the relaxation time data. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1307–1328, 1999  相似文献   

5.
Differential scanning calorimetry (DSC) can be used to infer the distribution of lamellar crystal thickness l. For homopolymers, the relation between melting temperature T and thickness is described by the Gibbs relation. In this case the weight distribution function of thickness g(l) ∝ P(T)(TT)2, where P(T) is DSC power and T is the melting temperature of an infinitely thick crystal. Copolymer melting is affected by the concentration of noncrystallizable comonomer in the melt as well as lamellar thickness. Unknown melt composition in copolymers with nonequilibrium crystallinity makes determination of the correct distribution g(l) from DSC impossible. An approximate distribution g2(l) ∝ P(T)(TT)2 is proposed, where T is based on Flory's equilibrium crystallization theory. This approximate distribution is most accurate when crystallinity is small, that is, near the upper end of the melting range. Results are reported for polyethylene homopolymer and model ethylene–butene random copolymers. Corrections were not made for distortion of the DSC endotherms by thermal lag or by melting and recrystallization; these experiments are primarily to illustrate the effect of analysis in terms of an incorrect g3(l) ∝ P(T). Average crystal thicknesses are about 20 nm for polyethylene and 5 nm for the copolymers. Distributions are characterized by lw /ln ≤ 1.1 in all cases. Width of the melting range is not a reliable indicator of the breadth of the thickness distribution. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3131–3140, 1999  相似文献   

6.
The peculiarities of ionic equilibrium in salt‐containing aqueous solutions of polyampholytes (acrylic acid–2‐methyl‐5‐vinylpyridine copolymers) of various compositions and molecular weights were studied. The protonation degree of base groups (βiep), the dissociation degree of acid groups (αiep), and the ionization constant of methylvinylpyridine groups (pKb) for the isoelectric points of the studied polyampholytes under various ionic strength values (I) were assessed spectrophotometrically. The dependencies of αiep and pKb versus the copolymer composition in the absence of low molecular weight electrolyte are described by the following equations: pKb = 6.2–0.037z and lg αiep = 0.27–0.0215z, where z is the molar content of the acrylic acid units. The basicity of methylvinylpyridine groups increases in proportion to the content of acid groups at a constant ionic strength and is independent of the molecular weight and molecular weight distribution of the copolymer. The relationship between pKb and the ionic strength of the solution for acrylic acid–methylvinylpyridine copolymers was established: pKb(I) = pK + B · I1/2, where pK is the thermodynamic ionization constant of base groups and B is 0.21 + 0.0065z. A good agreement between the experimental and theoretical (calculated from the given equation) values of the ionization constant, pKb, of methylvinylpyridine groups for other polyampholytes (copolymers of methacrylic acid with 2‐methyl‐5‐vinylpyridine) demonstrated that the ionic state of polyampholytes is determined by the basicity of methylvinylpyridine groups, which depends on the copolymer composition and solution ionic strength. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1824–1831, 2000  相似文献   

7.
The unperturbed chain dimensions (〈R2o/M) of cis/trans‐1,4‐polyisoprene, a near‐atactic poly(methyl methacrylate), and atactic polyolefins were measured as a function of temperature in the melt state via small‐angle neutron scattering (SANS). The polyolefinic materials were derived from polydienes or polystyrene via hydrogenation or deuteration and represent structures not encountered commercially. The parent polymers were prepared via lithium‐based anionic polymerizations in cyclohexane with, in some cases, a polymer microstructure modifier present. The polyolefins retained the near‐monodisperse molecular weight distributions exhibited by the precursor materials. The melt SANS‐based chain dimension data allowed the evaluation of the temperature coefficients [dln 〈R2o/dT(κ)] for these polymers. The evaluated polymers obeyed the packing length (p)‐based expressions of the plateau modulus, G = kT/np3 (MPa), and the entanglement molecular weight, Me = ρNanp3 (g mol?1), where nt denotes the number (~21) of entanglement strands in a cube with the dimensions of the reptation tube diameter (dt) and ρ is the chain density. The product np3 is the displaced volume (Ve) of an entanglement that is also expressible as pd or kT/G. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1768–1776, 2002  相似文献   

8.
Crystallization of poly(trimethylene terephthalate) (PTT) by annealing was examined using density measurement, differential scanning calorimetry, and far‐infrared spectroscopy (FIR). Crystallinity, measured by density, increased slowly up to the Ta of 185 °C and increases rapidly once Ta exceeds 185 °C. It was found that thermally induced crystallization is mainly temperature‐dependent above Ta = 185 °C and temperature‐ and time‐dependent below Ta = 60 °C. Two melting transitions, T and T, were observed for those samples annealed above 120 °C. No significant change in T was observed as a function of Ta while T showed strong dependency on Ta. Digital subtraction of the amorphous contribution from the semicrystalline FIR spectra provided characteristic spectra of amorphous and crystalline PTT. The bands at 373, 282, and 92 cm?1 were assigned to the crystalline phase, while the bands at 525, 406, and 351 cm?1 were attributed to the amorphous phase. It was shown that FIR spectroscopy can be used as a means to estimate the degree of crystallinity of PTT. The band ratio of 373 and 501 cm?1 was plotted against crystallinity measured by density and reasonably good correlation was obtained. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1675–1682, 2007  相似文献   

9.
A lap‐shear joint mechanical testing method has been probed to measure the surface glass transition temperature (T) of the thick bulk films of high‐molecular‐weight polymers. As T, the temperature transition “occurrence of autoadhesion–nonoccurrence of autoadhesion” has been proposed. The influence of chain flexibility, of molecular architecture, of polymer morphology, and of chain ends concentration on the T has been investigated. The correlation between the reduction in T with respect to the glass transition temperature of the bulk (T) and the intensity of the intermolecular interaction in the polymer bulk in amorphous polymers has been found. The effect of surface roughness on T has been discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2012–2021, 2010  相似文献   

10.
Thermal analyses were performed for determining the equilibrium melting temperatures T of the respective α‐ and β‐crystal in melt‐crystallized polymorphic poly(heptamethylene terephthalate) (PHepT) using both linear and nonlinear Hoffman‐Weeks (H‐W) methods for comparison of validity. These two crystals in PHepT do not differ much in their melting temperatures. The equilibrium melting temperatures of the α‐ and β‐crystal as determined by the linear H‐W method are 98 °C and 100.1 °C, respectively; but the nonlinear H‐W method yielded higher values for both crystals. The equilibrium melting temperatures of the α‐ and β‐crystal according to the nonlinear H‐W method are 121 °C and 122.5 °C, respectively. Both methods consistently indicate that T of the β‐crystal is only slightly higher than that of the α‐crystal. Such small difference in T between the α‐ and the β‐crystal causes difficulties in judging the relative thermodynamic stability of these two crystals. Thus, kinetics of these two crystals was compared using the Avrami and Ozawa theory. The crystallization produced by quenching from Tmax = 110 °C and 150 °C shows a heterogeneous and homogeneous nucleation mechanism, respectively. The lower Tmax = 110 °C leads to heterogeneous nucleation and only α‐crystal in PHepT, whose crystallization rates at same Tc are much higher than crystallization rates by quenching from Tmax = 150 °C leading to either α‐ or β‐crystal with homogeneous nucleation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1839–1851, 2009  相似文献   

11.
Multiple melting peaks in some semicrystalline polymers such as poly(trimethylene terephthalate) (PTT) have caused some difficulty in estimating accurately the equilibrium melting points. PTT forms a miscible blend with amorphous poly(ether imide) (PEI); for comparison purposes, a miscible system of a fixed composition (PTT/PEI of weight ratio = 9/1) was determined. PTT and its miscible blend both exhibited dual melting peaks (labeled as low and high peaks: Tm,L, Tm,H), and the first peaks (Tm,L), not the second peak (Tm,H), should be used for extrapolation. The equilibrium melting temperatures (T) of neat PTT and its blend PTT/PEI (9/1) were 245.2 and 242.4 °C, respectively, by the linear Hoffman–Weeks treatment using the corrected values of Tm,L (i.e., values obtained using a heating rate close to zero). Linear and nonlinear treatments led to a significant difference in estimated T, and the relative validity of these two methods is discussed. The nonlinear estimate yielded a higher value by about 27.3 °C for neat PTT and 23.1 °C for the PTT/PEI (9/1) blend, respectively (also the correction in Tm,L at the same condition mentioned previously). Results showed melting depression in miscible PTT/PEI (9/1). In addition, the T value of neat PTT was higher than that of PTT/PEI (9/1) owing to much thicker and more‐perfect crystals in neat PTT. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1571–1581, 2002  相似文献   

12.
We present the dynamics of a series of three paramagnetic molecules of different volume, mass, and shape in amorphous glass‐forming polymer poly(isobutylene) (PIB) as investigated by means of electron spin resonance (ESR) technique. The reorientation behavior of spin probes is related to the ortho‐positronium (o‐Ps) annihilation in PIB from positron annihilation lifetime spectroscopy (PALS) and the extracted free volume information. It is also related to the dynamic data of PIB from broadband dielectric spectroscopy (BDS), neutron scattering (NS), and nuclear magnetic resonance (NMR) spectroscopy from literature. In the case of the smallest spin probe, 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO), a discontinuous course of the spectral parameter 2Azz versus T dependence was observed and the subsequent phenomenological model‐free analyses of the spectral parameter, 2Azz versus T, as well as of the correlation time, τc, versus 1/T plots provided the characteristic ESR temperatures ( , T50G, ) and (T, T, T). These characteristic ESR temperatures were found to be consistent with the characteristic PALS temperatures: T, T = T from temperature dependences of the mean o‐Ps lifetime, τ3, or the width of o‐Ps lifetime distribution, σ3, respectively. In addition, the relationships between the spin probe size, V, and the free volume hole size distributions gn(Vh) at the characteristic ESR temperatures indicate the significant influence of the free volume fluctuation at the crossover from slow to rapid regime as well as within the rapid motional regime. On the other hand, the two larger spin probes exhibit a rather continuous 2AzzT plots with the respective T50G's lying in the vicinity of T independently of their volume, mass and shape, suggesting the common origin of underlying process controlling this T50G transition. Finally, these mutual PALS and ESR findings were compared with the known dynamic behavior of PIB which suggest that the dynamics of the TEMPO and the larger spin probes are related to free volume fluctuation associated with primary α ‐ and secondary β processes, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1058–1068, 2009  相似文献   

13.
The Flory–Huggins theory as modified by Pouchlý has been applied to calculate preferential (λ) and total (Y) sorption coefficients for a ternary polymer system. The ternary interaction function (?1?2?3GT(u1, ?3)) is described as the product of three independent binary functions. This expression allows prediction of λ and Y from binary interaction parameters χ, χ, g, g, and g12(?10). Three ternary polymer systems are used to check the validity of the expression. Moreover for polymer systems in which the parameters g and/or g are unknown, a procedure to evaluate them has been developed and verified on systems for which sufficient experimental information is available.  相似文献   

14.
Highly oriented poly(trimethylene terephthalate) (PTT) fiber has a low birefringence that is unexpected for an aromatic polyester with a high refractive index. To explain this observation, the intrinsic birefringence Δn of PTT crystal was calculated from its bond polarizabilities to be 0.029. This Δn is almost an order of magnitude smaller than poly(ethylene terephthalate)'s value at 0.22, although both polymers have nearly identical crystal refractive indices. The small Δn is due to the arrangement of PTT's methylene groups in gauche conformations, causing the chain‐repeating unit to be tilted ~53° away from the c axis toward the basal plane. Because of the small Δn, the crystalline‐phase orientation made only a small contribution to the overall birefringence despite the fiber's high crystallinity and orientation. To understand the effect of the number of methylene groups on polyester optical anisotropy, the Δn's of a series of poly(m‐alkylene terephthalates) with m = 2–5 were compared and correlated with ψ: an angle made by the normal of the benzene ring with the crystal's axis. As ψ′ decreases, Δn of the polyesters diminishes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1513–1520, 2002  相似文献   

15.
The effects of liquid–liquid (L–L) phase separation on the crystallization behavior of binary syndiotactic polypropylene (sPP) and ethylene–propylene random copolymer (PEP) mixtures are examined by phase‐contrast microscopy (PCM), differential scanning calorimetry (DSC), and cloud point measurements. The PCM experiments reveal that blends of sPP and PEP exhibit a lower critical solution temperature behavior in the melt. The L–L phase diagram, constructed in terms of temperature (T) and composition by cloud point measurements, follows the prediction of the Flory–Huggins theory with the interaction parameter between sPP and PEP [χ(T) = 0.01153 ? 4.5738/T (K)]. When the blends are melted within the two liquid‐phase (α and β) regions, because of the fact that each phase domain reaches the equilibrium concentration ? and ? as well as the phase volume fraction να and νβ, the crystallinity of each component obeys the equation XC,I = να X + νβ X, I = PEP, sPP. Also, the equilibrium melting temperatures of both components remain constants, slightly lower than those of neat polymers. For the sPP/PEP blends crystallized from one homogeneous phase in the melt, we observe that the crystallizability of the major component is not greatly affected upon blending. However, the crystallization behavior of the minority component in the presence of the major component is strongly dependent on the crystallization temperature (Tc). When Tc is high, because the decreasing degree of the minority mobility is much greater than the increasing degree of the formed nuclei, the crystallizability of the minor component is depressed significantly. On the other hand, the promotion of the minority crystallizability in the intermediate regime of Tc is mainly because of the large increase of the heterogeneous nuclei upon blending with a major component. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2995–3005, 2004  相似文献   

16.
17.
The miscibility and phase behavior in a binary blend of isotactic polystyrene (iPS) and poly(cyclohexyl methacrylate) (PCHMA) were investigated by differential scanning calorimetry, optical microscopy (OM), and solid‐state 13C cross‐polarity/magic‐angle spinning NMR. The iPS/PCHMA blend was miscible when all compositions showed a single composition‐dependent glass‐transition temperature (Tg) and when the blend went through a thermodynamic phase transition upon heating to above the lower critical solution temperature as determined by OM measurements. The 1H NMR spin‐relaxation times in the laboratory frame (T) and in the rotating frame (T) for iPS/PCHMA blends with various compositions and neat components were directly measured through solid‐state13C NMR. The results of T indicated that the blends are homogeneous, at least on a scale of 75–85 nm, confirming the miscibility of the system. The single decay and composition‐dependent T values for each blend further demonstrated the blends are homogeneous on a scale of 2.5–3.5 nm. The results suggested that iPS and PCHMA are intimately mixed at the molecular level within the blends at all compositions. The tacticity of polystyrene does not seem to adversely influence the miscibility in blends of iPS/PCHMA. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 772–784, 2003  相似文献   

18.
We investigate relaxation dynamics in a series of six‐arm star/linear 1,4‐polybutadiene blends with mechanical rheometry measurements. Blend systems are formulated to systematically probe constraint release and arm relaxation dynamics. Zero shear viscosity and terminal relaxation times of star/linear polymer blends with fixed star arm molecular weights (Ma) and compositions (?S) are found to follow nonmonotonic dependencies on the linear polymer molecular weight (ML). At low values of ?S, at least two scaling regimes are apparent from the data (ξ0M and ξ0M), where ξ0 refers to the zero shear viscosity or terminal relaxation time of the blend. The two regimes are separated by a critical linear polymer molecular weight M* that is more than 20 times larger than the critical molecular weight for entanglements. When the linear polymer contribution to blend properties is removed, a clear transition from dilution dynamics, ξ0M, to Rouse‐like constraint‐release dynamics, ξ0M, is apparent at low values of ?S. At higher ?S values, a new activated constraint‐release dynamic regime is evident in which ξ0M and ξ0 ~ ?, where α changes continuously from approximately 2 to 0.5 as ?S increases and β varies from 2.0 to 1.0 as ML increases. The experimental results are compared with theoretical predictions based on a drag coupling model for entangled polymer liquids. All features observed experimentally are captured by this model, including the value of M* for the transition from dilution to Rouse constraint‐release dynamics. Predictions of the drag coupling model are also compared with published data for the zero shear viscosity and terminal relaxation time in bidisperse linear polymer blends and pure entangled starlike molecules. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2501–2518, 2001  相似文献   

19.
In this work, we prepared blends of bisphenol A polycarbonate (PC) and poly(ϵ‐caprolactone) (PCL) in a wide composition range by melt mixing and solution mixing. Two different molecular weights of PCL were used (nominally, 10.000 g/mol, PCL10, and 80.000 g/mol, PCL80). The thermal behavior of both systems was studied via differential scanning calorimetry under dynamic and isothermal conditions. The blends were miscible in the entire composition range in the liquid and amorphous states, as indicated by the single glass‐transition temperature (Tg) exhibited by both the PC/PCL10 and PC/PCL80 blends. The compositional variation of the Tg was accurately described by the Fox equation for the PC/PCL80 blends, whereas slight deviations from this equation were exhibited by the PC/PCL10 blends. For blend compositions containing 40% or more PCL, either one or both blend components crystallized. Crystallization occurred during cooling from the melt or during subsequent heating in the form of cold crystallization. Although PCL crystallization was reduced and its crystallization rate decreased with the addition of PC, PCL was a very effective macromolecular plasticizer for PC, to the extent that crystallization during the scan was detected for some blend compositions. Isothermal crystallization experiments allowed the determination of equilibrium melting points (T) by the Hoffman–Weeks extrapolation method. A T depression was found for both PCL and PC components as the content of the other blend component was increased. The Avrami equation was closely obeyed by both blend components during the isothermal overall crystallization kinetics up to crystalline conversion degrees of 60–70% and with values of Avrami indices ranging from 3 to 4, depending on the crystallization temperature employed. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 771–785, 2001  相似文献   

20.
This work examined the miscibility, crystallization kinetics, and melting behavior of melt‐mixed poly(trimethylene terephthalate) (PTT)/poly(ethylene‐co‐cyclohexane 1,4‐dimethanol terephthalate) (PETG) blends. Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction techniques were used to approach the goals. The single composition‐dependent glass‐transition temperatures of the blends and the equilibrium melting temperature (T) depression of PTT in the blends indicated the miscible characteristic of the blend system at all compositions. T of pure PTT, determined with a conventional extrapolative method, was 525.8 K. Furthermore, the Flory–Huggins interaction parameter was estimated to be ?0.38. The dynamic and isothermal crystallization abilities of PTT were hindered by the incorporation of PETG. A complex melting behavior was observed for pure PTT and its blends. The observed complex melting behavior resulted mainly from the recrystallization and/or reorganization of the originally formed crystals during the heating scans. For the samples crystallized under the same conditions, the degree of recrystallization and/or reorganization declined with increasing PETG contents in the blends. The preliminary results obtained from the DSC experiments suggested that untraceable interchange reactions occurred in the studied blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2264–2274, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号