首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The curing kinetics of the diglycidyl ether of bisphenol‐A (DGEBA)/2‐ethyl‐4‐methylimidazole (EMI‐2,4)/nano‐sized carborundum (nano‐SiC) system was studied by means of nonisothermal differential scanning calorimetry (DSC). An isoconversional method of kinetic analysis yields a dependence of the effective activation energy E on the extent of conversion that decreases initially, and then increases as the cure reaction proceeds. The variations of E were used to study the cure reaction mechanisms, and the Shrinking Core Model was used to study the resin–particle reaction. The results show that the presence of nano‐SiC particles prevents the occurrence of vitrification, as well as inhibits the cure reaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 371–379, 2006  相似文献   

2.
The curing mechanisms and kinetics of diglycidyl ether of bisphenol A with diethylenetriamine as the curing agent and different amounts of organic montmorillonite were examined with isothermal and dynamic scanning calorimetry. The modified Avrami equation was used to calculate the activation energy and reaction orders in the isothermal experiment. A single peak was observed in each dynamic scan. The curing mechanism and kinetics of the curing reaction were also analyzed by two kinds of methods—Kissinger and Flynn–Wall–Ozawa. The results obtained from those methods under dynamic measurement agreed with those obtained from the modified Avrami equation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 378–386, 2003  相似文献   

3.
The structural transition in the polyethersulfone (PES)‐modified bismaleimide resin, 4,4′‐bismaleimidodiphenylmethane (BDM), during isothermal curing was studied by using rheological technique, different scanning calorimetry (DSC), and time resolved light scattering (TRLS). Comparing with the cure of neat bismaleimide, two separate tan δ crossover points were observed because of the phase separation during curing the blends of PES/BDM. These two structural transitions stemmed from the fixing of phase structure of the system and the chemical crosslinking of bismaleimide, respectively. The effect of curing temperature and the PES content on structural transition was discussed and found that the occurrence of two structural transition exhibited the different dependency of curing temperature and PES content. The relaxation exponent n and gel strength S were also found to be temperature‐dependent and composition‐dependent. Moreover, the relaxation exponent n of the second structural transition is much lower than that of the first structural transition in the PES/bismaleimide blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3102–3108, 2006  相似文献   

4.
The curing process of hexamethylene diisocyanate‐based polyurethane has been monitored by applying FTIR and DSC methods. A general relationship between glass‐transition temperature (Tg) and conversion of curing process has been obtained. This suggests that the reaction path and the relative reaction rates are independent of the curing temperature. The reaction kinetics of the system is analyzed using the Tg data converted to the conversion of the curing process. A set of experimental data and one theoretical model of Tg versus chemical conversion are presented to prove the assumption where a direct one‐to‐one relationship between the Tg (as measured) and the chemical conversion is obtained. Apparent activation energies (Ea) obtained by applying three different methods suggest good agreement. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2213–2220, 2000  相似文献   

5.
The investigation of the cure kinetics of a diglycidyl ether of bisphenol A (DGEBA)/phenol‐novolac blend system with different phenolic contents initiated by a cationic latent thermal catalyst [N‐benzylpyrazinium hexafluoroantimonate (BPH)] was performed by means of the analysis of isothermal experiments using a differential scanning calorimetry (DSC). Latent properties were investigated by measuring the conversion as a function of curing temperature using a dynamic DSC method. The results indicated that the BPH in this system for cure is a significant thermal latent initiator and has good latent thermal properties. The cure reaction of the blend system using BPH as a curing agent was strongly dependent on the cure temperature and proceeded through an autocatalytic kinetic mechanism that was accelerated by the hydroxyl group produced through the reaction between DGEBA and BPH. At a specific conversion region, once vitrification took place, the cure reaction of the epoxy/phenol‐novolac/BPH blend system was controlled by a diffusion‐control cure reaction rather than by an autocatalytic reaction. The kinetic constants k1 and k2 and the cure activation energies E1 and E2 obtained by the Arrhenius temperature dependence equation of the epoxy/phenol‐novolac/BPH blend system were mainly discussed as increasing the content of the phenol‐novolac resin to the epoxy neat resin. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2945–2956, 2000  相似文献   

6.
The investigation of cure kinetics and relationships between glass transition temperature and conversion of biphenyl epoxy resin (4,4′-diglycidyloxy-3,3′,5,5′-tetramethyl biphenyl) with different phenolic hardeners was performed by differential scanning calorimeter using an isothermal approach over the temperature range 120–150°C. All kinetic parameters of the curing reaction including the reaction order, activation energy, and rate constant were calculated and reported. The results indicate that the curing reaction of formulations using xylok and dicyclopentadiene type phenolic resins (DCPDP) as hardeners proceeds through a first-order kinetic mechanism, whereas the curing reaction of formulations using phenol novolac as a hardener goes through an autocatalytic kinetic mechanism. The differences of curing reaction with the change of hardener in biphenyl epoxy resin systems were explained with the relationships between Tg and reaction conversion using the DiBenedetto equation. A detailed cure mechanism in biphenyl-type epoxy resin with the different hardeners has been suggested. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 773–783, 1998  相似文献   

7.
The effects of hyperbranched polyesters on the cure kinetics of diglycidyl ether of bisphenol A (DGEBA) in the presence of m‐phenylene diamine were investigated with nonisothermal differential scanning calorimetry. The results showed that the addition of hyperbranched polyesters enhanced the cure reaction of DGEBA with m‐phenylene diamine, and this resulted in a reduction of the peak temperature of the curing curve and the activation energy because of the low viscosity and large number of terminal hydroxyl groups. However, when linear poly(ethylene glycol) was added, the activation energy of the blends also slightly decreased, whereas the peak temperature of the curing curve increased. The curing kinetics of the blends were calculated by the isoconversional method of Málek. The two‐parameter autocatalytic model (i.e., the ?esták–Berggren equation) was found to be the most adequate for describing the cure kinetics of the studied systems. The obtained nonisothermal differential scanning calorimetry curves showed results in agreement with those theoretically calculated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2649–2656, 2004  相似文献   

8.
Kinetic studies established that the monomethylation of a primary amine leads to significantly higher reaction rates with glycidyl ethers. The relative rates for approximately 25 amines were determined in an alcohol solvent under pseudo‐first‐order conditions (excess epoxy). The rates were referenced to aniline. For the aliphatic amines, reactivity consistently increased upon going from a primary amine to the corresponding N‐methyl secondary amine. This acceleration effect was not seen for aniline. The enhanced reactivity was also seen in curing systems, both with pure methylated amine curing agents and with complex mixtures obtained from the partial methylation of polyamines. Economically viable partially methylated amine curing agents were obtained by the reductive alkylation of commercial polyamines with formaldehyde and by the reaction of monomethylamine with 3‐(N‐methylamino)propionitrile in the presence of hydrogen and a hydrogenation catalyst. Although actual cure performance is based on a complex combination of several factors, the acceleration due to monomethylation could be a useful tool for enhancing amine/epoxy curing reactions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 921–930, 2000  相似文献   

9.
几种聚醚胺改性蒙脱土对环氧树脂固化过程的影响   总被引:1,自引:0,他引:1  
段轶锋  王小群  刘羽中  杜善义 《化学学报》2012,70(10):1179-1186
首先制备了五种聚醚胺改性蒙脱土(MMT), 并将这五种聚醚胺改性蒙脱土加入到双酚A 型环氧树脂E51 和聚醚胺D400体系中, 采用差示扫描量热法(DSC)考察了五种聚醚胺改性MMT对环氧树脂升温固化进程的影响. 随后, 优选一种EP/MMT 混合体系即EP/D400-T500-MMT 混合体系, 系统地研究了该体系与纯环氧树脂体系在130, 140, 150 及160 ℃等几个温度下的等温固化过程, 考察了等温固化时间对固化度和固化度变化速率的影响以及固化度与固化度变化速率之间的关系, 并利用Kamal 模型进行拟合计算了固化动力学参数. 研究结果表明, 与纯环氧树脂相比, 几种聚醚胺改性MMT 的固化放热峰均向高温迁移, 同时聚醚胺D400 协同插层MMT 降低了高分子量聚醚胺插层MMT 所导致的环氧树脂DSC 曲线的畸变情况; EP/D400-T500-MMT 混合体系和纯环氧体系的等温固化反应过程符合Kamal 模型;在相同的固化温度下, EP/D400-T5000-MMT 混合体系的反应速率常数k1k2 值以及反应级数m 均比纯EP 体系小, 而反应级数n 以及总反应级数m+n 值比纯EP 体系大, 表明两种聚醚胺协同插层的改性蒙脱土D400-T5000-MMT 的加入降低了环氧体系固化反应速率. 另外, EP/D400-T5000-MMT 混合体系的活化能Ea1Ea2 与纯EP 体系的相比也略有升高.  相似文献   

10.
双马来酰亚胺树脂固化过程的红外光谱分析   总被引:4,自引:1,他引:4  
利用傅里叶变换红外光谱法研究双马来酰亚胺树脂固化过程中的结构变化,认为双马来酰亚胺树脂固化反应分两进行,第一步是低温下的“ENE”反应,第二步是高温下的Diels-Alder反应,树脂第一步固化反应达到一定程度后,要进一步提高固化反应程度,必须提高温度才能使第二步固化反应发生。  相似文献   

11.
Using differential scanning calorimetry (DSC), we have studied, under isothermal and dynamic conditions, the kinetics of the cure reaction for an epoxy resin based on the diglycidyl ether of bisphenol A (DGEBA) modified with different contents of acrylonitrile–butadiene–styrene (ABS) and cured with 1,3‐bisaminomethylcyclohexane (1,3‐BAC). Kinetic analysis were performed using three kinetic models: Kissinger, Flynn–Wall–Ozawa, and the phenomenological model of Kamal as a result of its autocatalytic behavior. Diffusion control is incorporated to describe the cure in the latter stages, predicting the cure kinetics over the whole range of conversion. The total heats of reaction were not influenced by the presence of ABS. The autocatalytic mechanism was observed both in the neat system as well as in its blends. The reaction rates of the blends and the maximum conversions reached did not change too much with the ABS content. Blending ABS within the epoxy resin does not change the reaction mechanism of the epoxy resin formation. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 351–361, 2000  相似文献   

12.
13.
Mechanism and curing kinetics of bisphenol A epoxy resin–iso‐methyltetrahydrophthalic anhydride compositions using quaternary phosphonium salts as accelerators were investigated by differential scanning calorimetry (DSC) and electrospray mass‐spectrometry (ESI‐MS). The DSC method was applied to investigate curing kinetics and apparent activation energy values for the overall curing process. The DSC results showed that some of the phosphonium salts lead to a lower activation energy, that means they are more effective accelerators for the curing of epoxy–anhydride systems. The mechanism of curing was studied by ESI‐MS using the model reaction of epichlorohydrin (E) with phthalic anhydride (PA) in the presence of phosphonium salts or 2‐methylimidazole. Products containing the alkyl moiety of the phosphonium salt in form of alkyl esters could be identified. This suggests that the phosphonium salts activate the anhydride by electrophilic attack. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1088–1097  相似文献   

14.
The investigations of cure kinetics and glass transition temperature (Tg) versus reaction conversion (α) of o-cresol novolac epoxy resin with the change of hardener were performed. All kinetic parameters of the curing reaction such as the reaction rate order, activation energy, and frequency factor were calculated. The curing mechanisms were classified into two types. One was an autocatalytic mechanism and the other was a nth order kinetic mechanism. The constants related to the chain mobility of polymer segments were obtained by using the DiBenedetto equation. We have tried to correlate the relationships between curing mechanism and molecular structures of hardeners from these results. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
The influence of temperature and the initiator concentration on the curing of an unsaturated polyester resin was studied by means of differential scanning calorimetry (DSC) and Fourier‐transform infrared spectroscopy (FTIR). It was established that there is an isoconversional relationship of the type lnt = abln[I]0 between the curing time, t, and the initial initiator concentration, [I]0, at a given temperature. This relationship indicates that the degree of conversion curves vs. the logarithm of the curing time at different [I]0 may be superposed by displacement relative to a reference curve. It was confirmed that the reaction mechanism varies throughout the whole curing process, although it does not vary with the temperature and the [I]0 at each degree of conversion. It was established that there is a universal isoconversional relationship of the type lnt = dbln[I]0 + E/RT that expresses the dependency of the curing time on the temperature, T, and the [I]0. The parameters a, b, and d depend on the reaction mechanism, and can be calculated on the basis of isothermal experiments at different temperatures and with different [I]0. The adjustment lnt = dbln[I]0 + E/RT shows that there is an equivalence between the effect on the curing kinetics of the temperature and the initiator concentration. The same curing process can be achieved by using different combinations of curing temperatures and the [I]0. In the two adjustments established, it is not necessary to know the reaction mechanism, and the only assumption made is that for a given conversion the reaction mechanism is invariant with respect to the [I]0 and the temperature. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 751–768, 1999  相似文献   

16.
Phthalonitrile monomers can be polymerized thermally in the presence of small amounts of curing agents into thermosetting polymers. The thermosets exhibit outstanding thermo-oxidative stability, display good mechanical properties, and offer promise as matrices for composite applications. The phthalonitrile cure reaction is typically accomplished with an aromatic diamine, 1,3-bis(3-aminophenoxy)benzene (m-APB), added in the range of 1.5–2% by weight of the monomer in the melt phase. This article addresses the cure reaction with a sulfone-containing diamine, bis[4-(4-aminophenoxy)phenyl] sulfone (p-BAPS), which shows lower volatility as determined from thermogravimetric studies (TGA) compared to m-APB at the processing temperatures typically employed for phthalonitrile cures. Rheometric studies conducted to monitor the viscosity increase during a cure reaction suggest that the cure reaction with m-APB is faster compared to the reaction with p-BAPS. Even though differences are seen in the initial cure rates, the final cured products are similar in terms of the glass transition temperatures and thermal and oxidative stabilities. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1885–1890, 1998  相似文献   

17.
In this study, the effect of water addition on cure kinetics in an epoxy‐amine thermoset was investigated. Near FTIR spectra demonstrated that a small amount of water addition significantly accelerated the cure reaction in terms of epoxide conversion, with water acting as a catalyst for the reaction. Use of a modified mechanistic model allowed direct comparison of the effect of hydroxyl groups generated from water addition to those generated from the polymer chain. The comparison of those kinetic parameters shows that the two effects are very close, in which difference in the logarithmic value of the reaction constant is less than one order of magnitude over all the reaction conditions. The kinetic study also confirmed a strong negative substitution effect for this system. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Diethylphosphite (DEP) and its derivative exhibited thermally latent properties for epoxy curing reactions through the formation of phosphonic acid as an active species from a reaction of ethanol elimination, which was observed with 1H NMR and pyrolysis gas chromatography/mass spectrometry measurements. The thermally latent properties and curing reaction kinetics of the curing reaction of DEPs with diglycidyl ether of bisphenol A were studied with differential scanning calorimetry. The cured epoxy resins possessed a phosphorous element coming from the DEP derivatives, exhibiting improved flame retardancy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 432–440, 2003  相似文献   

19.
The curing kinetics of a novel liquid crystalline epoxy resin with combining biphenyl and aromatic ester‐type mesogenic unit, diglycidyl ether of 4,4′‐bis(4‐hydroxybenzoyloxy)‐3,3′,5,5′‐tetramethyl biphenyl (DGE‐BHBTMBP), and the curing agent diaminodiphenylsulfone (DDS) was studied using the advanced isoconvensional method (AICM). DGE‐BHBTMBP/DDS curing system was investigated the curing behavior by means of differential scanning calorimetry (DSC) during isothermal and nonisothermal processes. Only one exothermal peak appeared in isothermal DSC curves. A variation of the effective activation energy with the extent of conversion was obtained by AICM. Three different curing stages were confirmed. In the initial curing stage, the value of Ea is dramatically decreased from ~90 to ~20 kJ/mol in the conversion region 0–0.2 for the formation of LC phase. In the middle stage, the value of Ea keeps about ~80 kJ/mol for cooperative effect of reaction mechanism and diffusion control. In the final stage, a significant increase of Ea from 84 to 136 kJ/mol could be caused by the mobility of longer polymer chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3922–3928, 2007  相似文献   

20.
Thiol-ene reaction method was introduced to photopolymerize a new liquid formulation of commercial bismaleimide, as an alternative to traditional thermal cure method presently used for BMI in the industry. UV curing was shown to be an efficient method which promoted the reaction rate significantly and was able to achieve this at low temperatures (30-50 °C). The liquid formulation is stable and has low viscosity. The cure mechanism and cure kinetics were studied based on the data elucidated from the DPC and FTIR. The cured thin film can achieve very high thermal stability (∼400 °C) and BMI can retard the thermal degradation temperature and rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号