首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the ternary system Se/Bi/Cl a new polycation containing phase besides the already known Se4[Bi4Cl14], Se8[Bi4Cl14], and Se10[Bi5Cl17] was discovered. Red, transparent, plate shaped crystals of Se10[Bi4Cl14] were formed by reaction of Se/SeCl4/BiCl3 in 15:1:8 molar ratio in evacuated glass ampoules applying a temperature gradient from 90 to 80 °C. The crystal structure consists of bicyclic Se102+ cations and of layered chloridobismutate anions with the cations located between the anionic planes. The atoms of the cation form a six membered ring with a Se4 chain bridging over the 1,4 positions of the Se6 ring. The anions are made up of BiCl7 polyhedra connected by common edges to layers all contain an anion of identical formula and two‐dimensional connectivity, but these polymeric chloridobismutates are not isostructural. The structural differences are discussed on basis of the different topologies of the nets made up by the bismuth atoms.  相似文献   

2.
Bi37InBr48: a Polar Subhalide with Bi95+ Polycations, Complex Bromobismuthate(III) Anions [Bi3Br13]4— and [Bi7Br30]9—, and Pentabromoindate(III) Anions [InBr5]2— Black crystals of Bi37InBr48 were synthesized from bismuth, indium and BiBr3 by cooling stoichiometric melts from 570 K to 470 K. X‐ray diffraction on powders and single‐crystals revealed that the compound crystallizes with space group P 63 (a = 2262.6(4); c = 1305.6(2) pm). The Bi95+ polycations in the polar crystal structure have the shape of heavily distorted tri‐capped trigonal prisms with approximate Cs symmetry. The high complexity of the structure results from three coexisting types of anionic groups: Three edge‐sharing [BiBr6] octahedra constitute the trigonal bromobismuthate(III) anion [Bi3Br13]4—. Four [BiBr6] and three [BiBr5] polyhedra share common vertices to form the [Bi7Br30]9— hemi‐sphere, in which the trigonal bipyramid of the pentabromoindat(III) ion [InBr5]2— is embedded.  相似文献   

3.
Bi53+ Polycations in Ordered and Plastic Crystals of Bi5[AlI4]3 and Bi5[AlBr4]3 Dark‐red air‐sensitive crystals of pentabismuth‐tris(tetrabromoaluminate) Bi5[AlBr4]3 and black crystals of Bi5[AlI4]3 have been crystallized from melts of Bi, BiX3 and AlX3 (X = Br, I). X‐ray diffraction on a single crystal of Bi5[AlI4]3 (T = 293(2) K; space group Pnma; a = 2143.6(3) pm, b = 1889.1(1) pm, c = 811.74(5) pm) revealed an ordered packing of Bi53+ trigonal bipyramids and [AlI4]? tetrahedra that corresponds to the PuBr3 structure type. Contrary to the so far known Bi53+ polycations with accurate D3h symmetry, the bismuth cluster found in Bi5[AlI4]3 holds only Cs symmetry. The room temperature structure of the tetrabromoaluminate Bi5[AlBr4]3, which is related to the AuCu3 type, shows a dynamic disorder of the Bi53+ polycations (T = 293(2) K; space group ; a = 1766.2(3) pm). Slight cooling induces the transition into an ordered rhombohedral phase isostructural to Bi5[AlCl4]3 (T = 260(2) K; space group a = 1241.5(8) pm, c = 3041(2) pm).  相似文献   

4.
Syntheses, Properties and Crystal Structures of the Cluster Salts Bi6[PtBi6Cl12] and Bi2/3[PtBi6Cl12] Melting reactions of Bi with Pt and BiCl3 yield shiny black, air insensitive crystals of the subchlorides Bi6[PtBi6Cl12] and Bi2/3[PtBi6Cl12]. Despite the substantial difference in the bismuth content the two compounds have almost the same pseudo‐cubic unit cell and follow the structural principle of a CsCl type cluster salt. Bi6[PtBi6Cl12] consists of cuboctahedral [PtBi6Cl12]2? clusters and Bi62+ polycations (a = 9.052(2) Å, α = 89.88(2)°, space group P 1, multiple twins). In the electron precise cluster anion, the Pt atom (18 electron count) centers an octahedron of Bi atoms whose edges are bridged by chlorine atoms. The Bi62+ cation, a nido cluster with 16 skeletal electrons, has the shape of a distorted octahedron with an opened edge. In Bi2/3[PtBi6Cl12] the anion charge is compensated by weakly coordinating Bi3+ cations which are distributed statistically over two crystallographic positions (a = 9.048(2) Å, α = 90.44(3)°, space group ). Bi6[PtBi6Cl12] is a semiconductor with a band gap of about 0.1 eV. The compound is diamagnetic at room temperature though a small paramagnetic contribution appears towards lower temperature.  相似文献   

5.
Synthesis and Crystal Structures of the Quaternary Chalcogenide Chlorides AgBi2S3Cl and AgBi2Se3Cl Grey crystals of AgBi2S3Cl and AgBi2Se3Cl were synthesized from AgCl and Bi2S3 or Bi2Se3by cooling stoichiometric melts from 790 K to room temperature. X‐ray diffraction on powders and single‐crystals revealed that the compounds crystallize isostructural with space group type P 21/m. In the crystal structure of AgBi2S3Cl the bismuth(III) cations have a capped trigonal prismatic coordination of sulfide and chloride ions. The prisms constitute a three‐dimensional framework by sharing common edges and faces. Silver(I) cations, which have a distorted octahedral coordination of sulfide ions, fill linear channels. Parallels to the crystal structures of Cu3Bi2S4Cl and Pr2Br5 can be seen.  相似文献   

6.
Novel Gold Selenium Complexes: Syntheses and Structures of [Au10Se4(dpppe)4]Br2, [Au2Se(dppbe)], [(Au3Se)2(dppbp)3]Cl2, and [Au34Se14(tpep)6(tpepSe)2]Cl6 The reaction of gold phosphine complexes [(AuX)(PR3)] (X= halogen; R = org. group) with Se(SiMe3)2 yield to new chalcogeno bridged gold complexes. Especially within the use of polydentate phosphine ligands cluster complexes like [Au10Se4(dpppe)4]Br2 ( 1 ) (dpppe = 1, 5‐Bis(diphenylphosphino)pentane), [Au2Se(dppbe)] ( 2 ) (1, 4‐Bis(diphenylphosphino)benzene), [(Au3Se)2(dppbp)3]Cl2 ( 3 ) (dppbp = 4, 4′‐Bis‐diphenylphosphino)biphenyl) und [Au34Se14(tpep)6(tpepSe)2]Cl6 ( 4 ) (tpep = 1, 1, 1‐Tris(diphenylphosphinoethyl)phosphine, tpepSe = 1, 1‐Bis(diphenylphosphinoethyl)‐1‐(diphenylselenophosphinoethylphosphine) could be isolated and their structures could be determined by X‐ray diffraction. ( 1: Space group P1 (No. 2), Z = 2, a = 1642.1(11), b = 1713.0(9), c = 2554.0(16) pm, α = 80.41(3)°, β = 76.80(4)°, γ = 80.92(4)°; 2: Space group P21/n (No. 14), Z = 4, a = 947.3(2), b = 1494.9(3), c = 2179.6(7) pm, β = 99.99(3)°; 3: Space group P21/c (No. 14), Z = 8, a = 2939.9(6), b = 3068.4(6), c = 3114.5(6) pm, β = 109.64(3)°; 4: Space group P1 (No. 2), Z = 1, a = 2013.7(4), b = 2420.6(5), c = 2462.5(5) pm, α = 77.20(3), β = 74.92(3), γ = 87.80(3)°).  相似文献   

7.
Syntheses and Crystal Structure Analyses of [SbI3(SbMe3)(THF)]2 and [Li(THF)4]2[Bi2Cl8(THF)2] The reaction of Me3Sb with SbI3 in tetrahydrofuran (THF) gives [SbI3(SbMe3)(THF)]2 ( 1 ). [Li(THF)4]2[Bi2Cl8(THF)2] ( 2 ) is formed by reaction of LiCl and BiCl3 in tetrahydrofuran. The structures of ( 1 ) and ( 2 ) have been determined by X-ray diffractometry. Both structures contain centrosymmetric dimers with the geometry of edge sharing octahedra.  相似文献   

8.
Polymeric, Band Shaped Tellurium Cations in the Structures of the Chloroberyllate Te7[Be2Cl6] and the Chlorobismutate (Te4)(Te10)[Bi4Cl16] Te7[Be2Cl6] is obtained at 250 °C in an eutectic Na2[BeCl4] / BeCl2 melt from Te, TeCl4 und BeCl2 in form of black crystals, which are sensitive towards hydrolysis in moist air. (Te4) (Te10)[Bi4Cl16] is prepared from Te, TeCl4 und BiCl3 by chemical vapour transport in sealed evacuated glass ampoules in a temperature gradient 150 ° → 90 °Cin form of needle shaped crystals with a silver lustre. The structures of both compounds were determined based on single crystal X‐ray diffraction data (Te7[Be2Cl6]: orthorhombic, Pnnm, Z = 2, a = 541.60(3), b = 974.79(6), c = 1664.4(1) pm; (Te4)(Te10)[Bi4Cl16]: triclinic, P1¯, Z = 2, a = 547.2(3), b = 1321.1(7), c = 1490(1) pm, α = 102.09(5)°, β = 95.05(5)°, γ = 96.69(4)°). The structure of Te7[Be2Cl6] consists of one‐dimensional polymeric cations (Te72+)n which form folded bands and of discrete [Be2Cl6]2— anions which form double tetrahedraconnected by a common edge. By a different way of folding compared with the cations present in the structures of Te7[MOX4]X (M = Nb, W; X = Cl, Br) the (Te72+)n cation in Te7[Be2Cl6]represents a new, isomeric form. The structure of (Te4)(Te10)[Bi4Cl16] contains two different polymeric cations. (Te102+)n consists of planar Te10 groups in the form of three corner‐sharing Te4 rings connected to folded bands. (Te42+)n forms in contrast to the so far notoriously observed discrete, square‐planar E42+ ions a chain of rectangular planar Te4 rings (Te—Te 274 and 281 pm) connected by Te‐Te bonds of 297 pm. [Bi4Cl16]4— has a complex one‐dimensional structure of edge‐ and corner‐sharing BiCl7 units.  相似文献   

9.
Alkali Metal Phosphoraneiminates. New Syntheses and Crystal Structures of [RbNPPh3]6 and [CsNPPh3]4 The alkali‐metal phosphoraneiminates MNPPh3 with M = Na, K, Rb, Cs have been synthesized by reactions of Ph3PI2 with the alkali‐metal amides in liquid ammonia and were obtained as pure samples by subsequent extraction with toluene. The ethyl derivative KNPEt3 has been prepared by an analogous route from Et3PBr2 and extraction with hexane. Single crystals of the phosphoraneiminates of rubidium and cesium are obtainable by crystallization from toluene and toluene/hexane, respectively. They were suitable for crystal structure determinations. [RbNPPh3]6 · 41/2 toluene ( 1 ): space group P1, Z = 2, lattice dimensions at 193 K: a = 1525.5(2); b = 1902.9(2); c = 2178.3(2) pm; α = 95.435(12)°; β = 91.145(12)°; γ = 90.448(12)°; R1 = 0.0529. The compound forms a Rb6N6 skeleton of a double cube with a common face of two rubidium and two nitrogen atoms, the latter being fivefold coordinated by four rubidium atoms and the phosphorus atom. [CsNPPh3]4 · 2 toluene · 33/4 hexane ( 2 a ): space group Fd3, Z = 8, lattice dimensions at 123 K: a = b = c = 2679.7(1) pm; R1 = 0.0405. [CsNPPh3]4 · 2 toluene ( 2 b ): space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1418.9(1); b = 2258.9(1); c = 2497.6(1) pm; β = 91.055(6)°; R1 = 0.0278. Both cesium compounds form Cs4N4 heterocubane structures which are different by means of the packing and by different bond angles at the cesium and nitrogen atoms.  相似文献   

10.
A new phase has been prepared by methanolothermal reaction of Cs2CO3, BiCl3 and Li3AsSe3 at 130 °C for 36 hours. Cs4BiAs3Se7 ( I ) reveals the first Bi‐selenoarsenate polyanionic chain [Bi(As2Se4)(AsSe3)]4–, consisting of Bi3+ ions in a distorted octahedral environment of [AsSe3]3– and trans‐[As2Se4]4– units. The latter anion consists of a central “As24+” dumb‐bell whereby two Se atoms are attached to each of the As atoms. Structural Data: Space Group P21/n, a = 13.404(4) Å, b = 23.745(8) Å, c = 13.880(4) Å, β = 99.324(6)°, Z = 8.  相似文献   

11.
Phosphoraneiminato Complexes of Bismuth(III). Crystal Structures of [BiF2(NPEt3)(HNPEt3)]2 and [Bi2I(NPPh3)4]I3 [BiF2(NPEt3)(HNPEt3)]2 ( 1 ) has been obtained by the reaction of BiF3 with Me3SiNPEt3 at 100 °C and subsequent extraction with 1,2‐dimethoxyethane in the presence of traces of water forming pale‐yellow, moisture sensitive crystals, which were characterized by a crystal structure determination. Space group P21/n, Z = 4, lattice dimensions at –83 °C: a = 2105.0, b = 1195.8, c = 728.2 pm, β = 92.55°. 1  forms centrosymmetric dimeric molecules, in which the Bi atoms are linked via Bi–N bonds of varying length (213.9 and 240.1 pm) of the NPEt3 groups to form a Bi2N2 four‐membered ring. The longer one of the two Bi–N bonds is trans to one terminal F atom. [Bi2I(NPPh3)4]I3 ( 2 ) has been obtained by the reaction of bismuth with N‐iodine triphenylphosphaneimine in dichloromethane forming red crystals. Crystal structure determination of 2 · 2.5 CH2Cl2: Space group P21/n, Z = 4, lattice dimensions at –50 °C: a = 1542.6, b = 2409.1, c = 2173.5 pm, β = 105.82°. In 2 the Bi atoms are linked via two N atoms of two NPPh3 groups to form a non‐planar Bi2N2 four‐membered ring with a fold angle of 27° along the N…N connection line. The two remaining NPPh3 groups are terminally connected and bent in the same direction. The iodide ion caps the two Bi atoms so that a [Bi2I(NPPh3)4]+ cation is formed.  相似文献   

12.
Structure Relationships between Tetraselenium(2+) Hexachlorometalates: Synthesis and Crystal Structure of Se4[ReCl6] and the Solid State Phase Transition of Se4[MCl6](M = Zr, Hf). The reaction of Se, SeCl4, and ReCl4 in a closed, evacuated glass ampoule at 485 K yields dark‐red moisture sensitive crystals of Se4[ReCl6] (orthorhombic, Pccn, a = 1091.5(1), b = 1057.2(1), c = 1015.0(1) pm). The crystal structure consists of almost square‐planar Se42+ cations and slightly distorted octahedral [ReCl6]2— anions. Se4[ReCl6] is paramagnetic with a moment of 3.54 μB/Re according to a d3 configuration and Re(IV). The magnetic moment obeys the Curie‐Weiss law with a Weiss constant of —33 K. The already known compounds Se4[ZrCl6] and Se4[HfCl6] crystallize in a closely related structure with tetragonal symmetry (space group P42/ncm). Both undergo a phase transition in the solid state into an orthorhombic low temperature form, which is isotypic to Se4[ReCl6]. The phase transition was monitored by single crystal and powder diffraction, the transition temperature was determined to 193(1) K for Se4[ZrCl6]. The changes of the lattice constants with temperature imply a displacive transition of mainly second order which is allowed by the translationsgleiche supergroup‐subgroup relation of index 2 between the space groups. No phase transition into a tetragonal high‐temperature form could be observed for the orthorhombic Se4[ReCl6].  相似文献   

13.
Syntheses, Crystal Structures, and Triple Twinning of the Cluster Trimers Bi2[PtBi6Br12]3 and Bi2[PtBi6I12]3 Melting reactions of Bi with Pt and BiX3 (X = Br, I) yield shiny black, air insensitive crystals of the subhalides Bi2[PtBi6X12]. Bi2[PtBi6Br12]3 crystallizes in the monoclinic space group C2/m with lattice parameters a = 1617.6(2) pm, b = 1488.5(1) pm, c = 1752.4(2) pm, and β = 110.85(4)°. Bi2[PtBi6I12]3 adopts the triclinic space group with pseudo‐monoclinic lattice parameters a = 1711.2(2) pm, b = 1585.1(1) pm, c = 1865.7(2) pm, and α = 90°, β = 111.15(4)°, γ = 90°. The two homoeotypic compounds consist of cuboctahedral [Pt?IIBiII6X?I12]2? clusters that are concatenated into linear trimers by BiIII atoms. The ordered distribution of BiIII atoms destroys the inherent threefold rotation axes in the packing of cluster anions. As a consequence of the pseudosymmetry the crystals are triple twinned along [201]. Due to different orientations of the cluster trimers there are two BiII···X inter‐cluster bridges per BiII atom in Bi2[PtBi6Br12]3 but only one bridge in Bi2[PtBi6I12]3. The structure of the iodine compound can be deduced from the NaCl structure type, leaving 37 of 96 atomic positions unoccupied. The arrangement of the cuboctahedral clusters follows the motif of a body‐centered cubic packing.  相似文献   

14.
About Selenidostannates. I Synthesis, Structure, and Properties of [Sn2Se6]4–, [Sn4Se10]4–, and [Sn3Se7]2– The selenidostannates [(C4H9)2NH2]4Sn2Se6 · H2O ( I ), [(C4H9)2NH2]4Sn4Se10 · 2 H2O ( II ) und [(C3H7)3NH]2Sn3Se7 ( III ) were prepared by hydrothermal syntheses from the elements and the amines. I crystallizes in the monoclinic spacegroup P21/n (a = 1262.9(3) pm, b = 1851.3(4) pm, c = 2305.2(4) pm, β = 104.13(3)° and Z = 4). The [Sn2Se6]4– anion consists of two edge‐sharing tetrahedra. II crystallizes in the orthorhombic spacegroup Pna21 (a = 2080.3(4) pm, b = 1308.2(3) pm, c = 2263.5(5) pm and Z = 4). The anion is formed from four SnSe4 tetrahedra which are joined by common corners to the adamantane cage [Sn4Se10]4–. III crystallizes in the orthorhombic spacegroup Pbcn (a = 1371.1(3) pm, b = 2285.4(5) pm, c = 2194.7(4) pm and Z = 8). The anion is a chain, built from edge‐sharing [Sn3Se5Se4/2]2– units, in which two corner sharing tetrahedra are connected to a trigonal bipyramid by an edge of one and a corner of the other tetrahedron. The results of the TG/DSC measurements and of temperature dependent X‐ray diffractograms reveal that I and II decompose at first by release of minor quantities of triethylammonium to compounds with layer structure and larger cell dimensions. At still higher temperature the rest of triethylammonium and H2Se is evolved, leaving SnSe2 and Se in the bulk. The former decomposes partially at the highest temperature to SnSe. In the measurements of III the complex intermediate compound was not observed. III decomposes directly to SnSe2.  相似文献   

15.
Crystal Structures, Vibrational Spectra and Normal Coordinate Analysis of fac ‐(Et4N)[OsF3Cl3] and fac ‐(Et4N)[IrF3Cl3] By careful oxidation of the pure fluorochloroosmates(IV) or ‐iridates(IV) with BrF3 or KBrF4 in dichloromethane the mixed pentavalent complex anions fac‐[OsF3Cl3] and fac‐[IrF3Cl3] are formed. X‐ray structure determinations on single crystals have been performed of cis‐(Et4N)[OsF3Cl3] ( 1 ) (orthorhombic, space group Pbca, a = 11.225(5), b = 12.020(5), c = 21.873(5) Å, Z = 8) and fac‐(Et4N)[IrF3Cl3] ( 2 ) (orthorhombic, space group Pbca, a = 11.269(10) b = 12.049(1), c = 21.801(3) Å, Z = 8). Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra for the anion of 1 and 2 have been assigned by normal coordinate analysis. The Osmium compound exhibits slightly higher valence force constants as compared with the Iridium complex: fd(OsF) = 3.25, fd(IrF) = 3.25, fd(OsCl) = 2.35 and fd(IrCl) = 2.25 mdyn/Å.  相似文献   

16.
Preparation and Structure of (3‐Methylpyridinium)3[DyCl6] and (3‐Methylpyridinium)2[DyCl5(Ethanol)] The complex chlorides (3‐Methylpyridinium)3[DyCl6] ( 1 ) and (3‐Methylpyridinium)2[DyCl5(Ethanol)] ( 2 ) have been prepared for the first time. The crystal structures have been determined from single crystal X‐ray diffraction data. 1 crystallizes in the trigonal space group R3c (Z = 36) with a = 2953.3(3) pm, b = 2953.3(3) pm and c = 3252.5(4) pm, compound 2 crystallizes in the triclinic space group P1 (Z = 2) with a = 704.03(8) pm, b = 808.10(8) pm, c = 1937.0(2) pm, α = 77.94(1)°, β = 87.54(1)° and γ = 83.26(1)°. The structures contain isolated octahedral building units [DyCl6]3– and [DyCl5(Ethanol)]2–, respectively.  相似文献   

17.
Tellurium Cations stabilized by Niobium Oxytrihalides: Synthesis and Crystal Structure of Te7NbOBr5 and Te7NbOCl5 The reaction of Te2Br with NbOBr3 in a sealed evacuated glass ampoule at 225°C yields Te7NbOBr5 in form of bright black needles. Te7NbOCl5 is obtained from tellurium, TeCl4 and NbOCl3 at 220°C. Both compounds crystallize orthorhombic in the space group Pcca (Te7NbOBr5: a = 2 651,9(4) pm, b = 836.6(1) pm, c = 794.6(1) pm; Te7NbOCl5: a = 2 597.7(5) pm, b = 805.1(1) pm, c = 791.2(1) pm). The crystal structure determinations show that Te7NbOBr5 and Te7NbOCl5 are built of one-dimensional polymeric tellurium cations, one-dimensional associated pyramidal NbOX4 groups (X = Cl, Br) and isolated halide anions. Magnetic properties of Te7NbOX5 were determined and confirm the expected diamagnetism. Te7NbOX5 can thus be formulated as [Te72+] [NbOX4?] (X?). The charge distribution in the structure type Te7MOX5 (M = W, Nb; X = Cl, Br) became clear by synthesis and characterisation of the two niobium containing compounds.  相似文献   

18.
Synthesis and Crystal Structures of Bismuth Chalcogenolato Compounds Bi(SC6H5)3, Bi(SeC6H5)3, and Bi(S‐4‐CH3C6H4)3 Bismuth(III) acetate reacts with thiophenol in ethyl alcohol at 80 °C to yield Bi(SC6H5)3 ( 1 ). Slow cool down of the deep yellow mixture lead to the formation of orange crystals of 1 . The homotype phenylselenolato compound of bismuth Bi(SeC6H5)3 ( 2 ) has been prepared by the reaction of BiX3 (X = Cl, Br) with Se(C6H5)SiMe3 in diethyl ether. In the same way as Bi(SC6H5)3 ( 1 ) the reaction between bismuth(III) acetate and 4‐tolulenethiole results in red crystals of Bi(S‐4‐CH3C6H4)3 ( 3 ). In consideration of three longer Bi–E distances (intermolecular interactions, E = S; Se) the Bi(EPh)3 molecules form via face‐linked octahedra 1‐dimensional chains in the crystal lattice, while for 3 the 1‐dimensional chain is formed by face‐linked trigonal prisma. We reported herein the synthesis and structures of Bi(SC6H5)3 ( 1 ), Bi(SeC6H5)3 ( 2 ), and Bi(S‐4‐CH3C6H4)3 ( 3 ).  相似文献   

19.
Phosphorane Iminato-Trichloroselenates(II): Syntheses and Crystal Structures of [SeCl(NPPh3)2]+SeCl3? and [Me3SiN(H)PMe3]2+[Se2Cl6]2? [SeCl(NPPh3)2]+SeCl3? has been synthesized by the reaction of Se2Cl2 with Me3SiNPPh3 in acetonitrile solution, forming orangered crystals, whereas red crystals of [Me3SiN(H)PMe3]2+[Se2Cl6]2? were obtained by the reaction of Me3SiNPMe3 with SeOCl2 in acetonitrile solution. Both complexes were characterized by X-ray structure determinations. [SeCl(NPPh3)2]+SeCl3?: Space group P21/n, Z = 4, structure solution with 7 489 observed unique reflections, R = 0.057. Lattice dimensions at ?60°C: a = 1 117.0; b = 2 241, c = 1 407.5 pm, β = 95.61°. In the cation [SeCl(NPPh3)2]+ the selenium atom is φ-tetrahedrally coordinated by the chlorine atom and by the nitrogen atoms of the phosphorane iminato ligands, whereas the anion SeCl3? has a T-shaped structure with φ-trigonal-bipyramidale surrounding of the selenium atom. [Me3SiN(H)PMe3]2+[Se2Cl6]2?: Space group P21/c, Z = 4, structure solution with 2 093 observed unique reflections, R = 0.080. Lattice dimensions at ?70°C: a = 956, b = 828, c = 1 973 pm, β = 93.80°. The structure consists of [Me3SiN(H)PMe3]+ ions and planar [Se2Cl6]2? anions, in which the selenium atoms are bridged nearly symmetrically by two chlorine atoms.  相似文献   

20.
Preparation and Structure of (2‐Methylpyridinium)3[TbCl6] and (2‐Methylpyridinium)2[TbCl5(1‐Butanol)] The complex chlorides (2‐Methylpyridinium)3[TbCl6] (1) and (2‐Methylpyridinium)2[TbCl5(1‐Butanol)] (2) have been prepared for the first time. The crystal structures have been determinated from single crystal X‐ray diffraction data. 1 crystallizes in the monoclinic space group C2/c (Z = 8) with a = 3241,2(5) pm, b = 897,41(9) pm, c = 1774,2(2) pm and β = 97,83(2)°, 2 in the monoclinic space group P21/n (Z = 4) with a = 1372,96(16) pm, b = 997,57(9) pm, c = 1820,5(2) pm and β = 108,75(1)°. The structures contain isolated octahedral building units [TbCl6]3– and [TbCl5(1‐Butanol)]2–, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号