首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Synthesis and Structure of Nitridoborate Nitrides Ln4(B2N4)N (Ln = La, Ce) of the Formula Type Ln3+x(B2N4)Nx (x = 0, 1, 2) The missing member of the formula type Ln3+x(B2N4)Nx with x = 1 was synthesized and characterized for Ln = La and Ce. According to the single‐crystal X‐ray structure solution Ce4(B2N4)N crystallizes in the space group C2/m (Z = 2) with the lattice parameters a = 1238.2(1) pm, b = 357.32(3) pm, c = 905.21(7) pm and β = 129.700(1)°. The anisotropic structure refinement converged at R1 = 0.039 and wR2 = 0.099 for all independent reflections. A powder pattern of La4(B2N4)N was indexed isotypically with a = 1260.4(1) pm, b = 366.15(3) pm, c = 919.8(1) pm and β = 129.727(6)°. A structure rational for nitridoborates and nitridoborate nitrides containing B2N4 ions with the general formula Ln3+x(B2N4)Nx with x = 0, 1, 2 is presented.  相似文献   

2.
On the Crystal Structure of the Phase La5B2C6 A homogeneous sample of La5B2C6 annealed at 1000 °C was investigated by X‐ray powder and single‐crystal as well as electron diffraction. The crystal structure was refined in space group P4/ncc (a = 8.590(1) Å, b = 12.398(1) Å, Z = 4, ρcalc = 5.723 g/cm, ρexp = 5.70 g/cm) allowing for anharmonic displacement parameters for the metal atoms. The structure contains twofold disordered CBCC units in bicapped tetragonal antiprismatic coordination in contrast to C2 and CBC units in earlier investigations.  相似文献   

3.
About Lanthanide Oxotantalates with the Formula MTaO4 (M = La – Nd, Sm – Lu) Besides being a by‐product of solid state syntheses in tantalum ampoules the lanthanide(III) oxotantalates of the formula MTaO4 can be easily prepared by sintering lanthanide sesquioxide M2O3 and tantalum(V) oxide Ta2O5 with sodium chloride as flux. Under these conditions two structure types emerge depending upon the M3+ cationic radius. For M = La – Pr the MTaO4‐type tantalates crystallize in the space group P21/c with lattice constants of a = 762(±1), b = 553(±4), c = 777(±4) pm, β = 101(±1)° and four formula units per unit cell. With M = Nd, Sm – Lu, the monoclinic cell dimensions (space group P2/c) shrink to the lattice constants like a = 516(±9), b = 551(±9), c = 534(±9) pm, β = 96.5(±0.3)° and there are only two formula units present. Both structures show a coordination sphere of eight oxygen atoms for the lanthanide trications shaped as distorted square antiprism for the structure with the larger lanthanides (in the following referred to as A‐type) and as trigonal dodecahedron for the structure with the smaller ones (called as B‐type in the following). The coordination environment about the Ta5+ cations can be described as a slightly distorted octahedron (CN = 6) for the A‐type structure of MTaO4 and a heavily distorted one (CN = 6) for the B‐type. The difference between the two types results from the interconnection of these [TaO6]7? octahedra. Whereas they are connected via four vertices to form corrugated layers according to parallel the bc‐plane in the A‐type, the octahedra of the B‐type MTaO4 structure share edges to built up zig‐zag chains along the c axis.  相似文献   

4.
Crystalline samples of La3Ni2B2N3 were synthesized using solid state metathesis reactions from combinations of La, LaCl3, NiCl2 together with Li3BN2. The structure was determined by single crystal X‐ray diffraction (I4/mmm (No. 139), a = 372.95(2) pm, c = 2056.3(2) pm, R1 = 0.027, wR2 = 0.062) and confirmed earlier results from neutron powder diffraction. La3Ni2B2N3 contains BN units capping square planar Ni layers. Isolated nitrogen atoms reside in La6 octahedra. Magnetic measurements on several bulk samples exhibit superconductivity at temperatures below 14.6 K.  相似文献   

5.
On Tripraseodymium Hexanitridotriborate Pr3B3N6: New Synthesis and Crystal Structure Refinement Single‐crystalline Pr3B3N6 was obtained by the reaction of praseodymium and BNx(NH)y(NH2)z in a NaCl melt under N2 atmosphere in a high‐frequency furnace at 1250 °C. Contrary to literature data, Pr3B3N6 crystallizes in the centrosymmetric space group R 3 c as revealed by single‐crystal X‐ray diffraction (a = 1211.95(9), c = 701.53(7) pm, Z = 6, R1 = 0.0258, wR2 = 0.0658). In the solid, Pr3B3N6 contains Pr3+ and planar cyclotrinitridoborate units B3N69–. The anions represent motifs from the structure of hexagonal boron nitride (h‐BN) and they are stacked analogously along [001]. Both the bond lengths B–N (average value 147.8 pm) and the interionic distances between the anions (350.8 pm) are comparable with the values in h‐BN.  相似文献   

6.
The Chloride Nitrate PrCl2(NO3) · 5 H2O with Cationic and Anionic Complexes according to [PrCl2(H2O)6][PrCl2(NO3)2(H2O)4] Green single crystals of PrCl2(NO3) · 5 H2O have been obtained from an aqueous solution of PrCl3 and Pr(NO3)3. The crystal structure [monoclinic, P2/c, Z = 4, a = 1228.8(3), b = 648.4(1), c = 1266.0(4) pm, β = 91.91(3)°] contains cationic and anionic Pr3+ complexes according to [PrCl2(H2O)6][PrCl2(NO3)2(H2O)4]. Both nitrate groups of the anionic complex act as bidentate chelating ligands. Hydrogen bonds are observed with water molecules as donors and chlorine as well as oxygen atoms as acceptors.  相似文献   

7.
CoSm(SeO3)2Cl, CuGd(SeO3)2Cl, MnSm(SeO3)2Cl, CuGd2(SeO3)4 and CuSm2(SeO3)4: Transition Metal containing Selenites of Samarium and Gadolinum The reaction of CoCl2, Sm2O3, and SeO2 in evacuated silica ampoules lead to blue single crystals of CoSm(SeO3)2Cl (triclinic, , Z = 4, a = 712.3(1), b = 889.5(2), c = 1216.2(2) pm, α = 72.25(1)°, β = 71.27(1)°, γ = 72.08(1)°, Rall = 0.0586). If MnCl2 is used in the reaction light pink single crystals of MnSm(SeO3)2Cl (triclinic, , Z = 2, a = 700.8(2), b = 724.1(2), c = 803.4(2) pm, α = 86.90(3)°, β = 71.57(3)°, γ = 64.33(3)°, Rall = 0.0875) are obtained. Green single crystals of CuGd2(SeO3)2Cl (triclinic, , Z = 4, a = 704.3(4), b = 909.6(4), c = 1201.0(7) pm, α = 70.84(4)°, β = 73.01(4)°, γ = 70.69(4)°, Rall = 0.0450) form analogously in the reaction of CuCl2 and Gd2O3 with SeO2. CoSm(SeO3)2Cl contains [CoO4Cl2] octahedra, which are connected via one edge and one vertex to infinite chains. The Mn2+ ions in MnSm(SeO3)2Cl are also octahedrally coordinated by four oxygen and two chlorine ligands. The linkage of the polyhedra to chains occurs exclusively via edges. Both, the cobalt and the manganese compound show the Sm3+ ions in eight and ninefold coordination of oxygen atoms and chloride ions. In CuGd(SeO3)2Cl the Cu2+ ions are coordinated by three oxygen atoms and one Cl ion in a distorted square planar manner. One further Cl and one further oxygen ligand complete the [CuO3Cl] units yielding significantly elongated octahedra. The latter are again connected to chains via two common edges. For the Gd3+ ions coordination numbers of ?8 + 1”? and nine were found. Single crystals of the deep blue selenites CuM2(SeO3)4 (M = Sm/Gd, monoclinic, P21/c, a = 1050.4(3)/1051.0(2), b = 696.6(2)/693.5(1), c = 822.5(2)/818.5(2) pm, β = 110.48(2)°/110.53(2)°, Rall = 0.0341/0.0531) can be obtained from reactions of the oxides Sm2O3 and Gd2O3, respectively, with CuO and SeO2. The crystal structure contains square planar [CuO4] groups and irregular [MO9] polyhedra.  相似文献   

8.
Preparation and Structure of (3‐Methylpyridinium)3[DyCl6] and (3‐Methylpyridinium)2[DyCl5(Ethanol)] The complex chlorides (3‐Methylpyridinium)3[DyCl6] ( 1 ) and (3‐Methylpyridinium)2[DyCl5(Ethanol)] ( 2 ) have been prepared for the first time. The crystal structures have been determined from single crystal X‐ray diffraction data. 1 crystallizes in the trigonal space group R3c (Z = 36) with a = 2953.3(3) pm, b = 2953.3(3) pm and c = 3252.5(4) pm, compound 2 crystallizes in the triclinic space group P1 (Z = 2) with a = 704.03(8) pm, b = 808.10(8) pm, c = 1937.0(2) pm, α = 77.94(1)°, β = 87.54(1)° and γ = 83.26(1)°. The structures contain isolated octahedral building units [DyCl6]3– and [DyCl5(Ethanol)]2–, respectively.  相似文献   

9.
On Oxytellurides (M2O2Te) of the Early Lanthanides (M = La–Nd, Sm–Ho) with A- or anti -ThCr2Si2-Type Crystal Structure By reacting elementary lanthanide metal (M = La–Nd, Sm–Ho) with tellurium dioxide (TeO2) in a 2 : 1 molar ratio, it is possible to obtain pure and single-phase oxytellurides of the composition M2O2Te at 750 °C in evacuated silica tubes within a few days. When larger quantities of cesium chloride (CsCl) are added as flux, plate-like single crystals with square cross-section are formed which are not sensitive to hydrolysis and very suitable for crystal structure refinements from X-ray data. In the anti-ThCr2Si2 analogous crystal structure (tetragonal, I4/mmm, Z = 2; La2O2Te: a = 412.31(4), c = 1309.6(1) pm; Ce2O2Te: a = 408.17(4), c = 1294.7(1) pm; Pr2O2Te: a = 405.62(4), c = 1285.8(1) pm; Nd2O2Te: a = 403.08(4), c = 1277.1(1) pm; Sm2O2Te: a = 399.83(4), c = 1265.5(1) pm; Eu2O2Te: a = 397.56(4), c = 1257.9(1) pm; Gd2O2Te: a = 396.20(4), c = 1253.2(1) pm; Tb2O2Te: a = 393.89(4), c = 1245.4(1) pm; Dy2O2Te: a = 392.34(4), c = 1240.3(1) pm; Ho2O2Te: a = 390.57(6), c = 1239.0(3) pm) the M3+ cations are surrounded by nine anions (4 O2– und 4 + 1 Te2–) in the shape of a capped square antiprism. The anions show coordination numbers of four (O2–: tetrahedra) and eight plus two (Te2–: bicapped cubes) with respect to the cations. PbO-analogous square {[OM4/4]2}2+ triple layer slabs are present parallel (001), which originate through two-dimensional infinite linking of [OM4]10+ tetrahedra via two trans-orientated pairs of edges (i. e. four edges altogether). These cationic layers are piled alternatingly along [001] with likewise quadratic single layers of Te2– anions, which take care of the three-dimensional coherence as well as of the charge balance.  相似文献   

10.
Preparation and Structure of (2‐Methylpyridinium)3[TbCl6] and (2‐Methylpyridinium)2[TbCl5(1‐Butanol)] The complex chlorides (2‐Methylpyridinium)3[TbCl6] (1) and (2‐Methylpyridinium)2[TbCl5(1‐Butanol)] (2) have been prepared for the first time. The crystal structures have been determinated from single crystal X‐ray diffraction data. 1 crystallizes in the monoclinic space group C2/c (Z = 8) with a = 3241,2(5) pm, b = 897,41(9) pm, c = 1774,2(2) pm and β = 97,83(2)°, 2 in the monoclinic space group P21/n (Z = 4) with a = 1372,96(16) pm, b = 997,57(9) pm, c = 1820,5(2) pm and β = 108,75(1)°. The structures contain isolated octahedral building units [TbCl6]3– and [TbCl5(1‐Butanol)]2–, respectively.  相似文献   

11.
NC12H8(NH)2[Gd(N3C12H8)4] and [Gd(N3C12H8)3(N3C12H9)]·PhCN: A Contribution to the Reactivity and Crystal Chemistry of Homoleptic Pyridylbenzimidazolates of the Rare Earth Elements Transparent colourless crystals of the compound NC12H8(NH)2[Gd(N3C12H8)4] were obtained by solvent‐free reaction of gadolinium metal with molten 2‐(2‐Pyridyl)‐benzimidazole. Transparent yellow crystals of the compound [Gd(N3C12H8)3(N3C12H9)]·PhCN were obtained by further reacting NC12H8(NH)2[Gd(N3C12H8)4] with benzonitrile thermally. Both compounds exhibit homoleptic pure nitrogen coordinations of gadolinium, the PhCN ligand is not coordinating. Whilst NC12H8(NH)2[Gd(N3C12H8)4] is salt like and consists of (NC12H8(NH)2)+ and [Gd(N3C12H8)4] ions, [Gd(N3C12H8)3(N3C12H9)]·PhCN has a molecular structure of uncharged [Gd(N3C12H8)3(N3C12H9)] units.  相似文献   

12.
Low‐Temperature Oxidation in Liquid Ammonia: [Eu2(Ind)4(NH3)6], the First Indolate of a Rare Earth Element Intensively yellow to orange coloured, transparent crystals of [Eu2(Ind)4(NH3)6] were obtained by low‐temperature oxidation of europium metal with indole (C8H6NH) in liquid ammonia at —50 °C and subsequent melting of the reaction mixture in excess indole at 120 °C. [Eu2(Ind)4(NH3)6] has a dimeric structure and contains divalent Eu. The coordination sphere around the europium atoms consists of five N atoms of two cisoid indolate anions and three NH3 molecules as well as an η5‐coordinating π‐system of another indolate ligand, bridging to the next Eu atom with an sp2‐orbital.  相似文献   

13.
Nd4N2Se3 and Tb4N2Se3: Two non‐isotypical Lanthanide(III) Nitride Selenides The non‐isotypical nitride selenides M4N2Se3 of neodymium (Nd4N2Se3) and terbium (Tb4N2Se3) are formed by the reaction of the respective rare‐earth metal with sodium azide (NaN3), selenium and the corresponding rare‐earth tribromide (MBr3) at 900 °C in evacuated silica ampoules after seven days. Each of them crystallizes monoclinically in the space group C2/c with Z = 4 for Nd4N2Se3 (a = 1300.47(4), b = 1009.90(3), c = 643.33(2) pm, β = 90.039(2)°) and in the space group C2/m with Z = 2 for Tb4N2Se3 (a = 1333.56(5), b = 394.30(2), c = 1034.37(4) pm, β = 130.377(2)°), respectively. The crystal structures differ fundamentally in the linkage of the structure dominating N3‐ centred (M3+)4 tetrahedra. In Nd4N2Se3, the [NNd4] units are edge‐linked to bitetrahedra which are cross‐connected to [N(Nd1)(Nd2)]3+ layers via their remaining four corners, whereas the [NTb4] tetrahedra in Tb4N2Se3 share cis‐oriented edges to form strands [N(Tb1)(Tb2)]3+. Both structures contain two crystallographically different M3+ cations, that show coordination numbers of six and seven (Nd4N2Se3) or twice six (Tb4N2Se3), respectively, relative to the anions (N3‐ und Se2‐). Each of the two independent kinds of Se2‐ anions provide the three‐dimensional linkage as well as the charge balance. The particular axial ratio a/c and the monoclinic reflex angle offer two choices for fixing the unit cell of Tb4N2Se3.  相似文献   

14.
Transparent orange crystals of [Yb(MeCp)2(O2CC6F5)]2 and [Yb(MeCp)2(O2C‐o‐HC6F4)]2 were obtained by oxidation of Yb(MeCp)2 with M(O2CR) (M = 1/2 Hg, Tl; R = C6F5, o‐HC6F4) in tetrahydrofuran. They have a dimeric structure with bridging bidentate (O, O')‐benzoate groups and eight coordinated ytterbium. Both crystallise isotypic in the orthorhombic space group Pbca. Room temperature as well as low temperature single crystal X‐ray investigations show the o‐H/F positions in [Yb(MeCp)2(O2C‐o‐HC6F4)]2 not to be ordered.  相似文献   

15.
On the H‐ and A‐Type Structure of La2[Si2O7] By thermal decomposition of La3F3[Si3O9] at 700 °C in a CsCl flux single crystals of a new form of La2[Si2O7] have been found which is called H type (triclinic, P1; a = 681.13(4), b = 686.64(4), c = 1250.23(8) pm, α = 82.529(7), β = 88.027(6), γ = 88.959(6)°; Vm = 87.223(9) cm3/mol, Dx = 5.113(8) g/cm3, Z = 4) continuing Felsche's nomenclature. It crystallizes isotypically to the triclinic K2[Cr2O7] in a structure closely related to that of A–La2[Si2O7] (tetragonal, P41; a = 683.83(7), c = 2473.6(4) pm; Vm = 87.072(9) cm3/mol, Dx = 5.122(8) g/cm3, Z = 8). For comparison, the latter has been refined from single crystal data, too. Both the structures can be described as sequence of layers of each of two crystallographically different [Si2O7]6– anions always built up of two corner‐linked [SiO4] tetrahedra in eclipsed conformation with non‐linear Si–O–Si bridges (∢(Si–O–Si) = 128–132°) piled up in [001] direction and aligned almost parallel to the c axis. They differ only in layer sequence: Whereas the double tetrahedra of the disilicate units are tilted alternating to the left and in view direction ([010]; stacking sequence: AB) in H–La2[Si2O7], after layer B there follow due to the 41 screw axis layers with anions tilted to the right and tilted against view direction ([010]; stacking sequence: ABA′B′) in A–La2[Si2O7]. The extremely irregular coordination polyhedra around each of the four crystallographically independent La3+ cations in both forms (H and A type) consist of eight to ten oxygen atoms in spacing intervals of 239 to 330 pm. The possibility of more or less ordered intermediate forms will be discussed.  相似文献   

16.
On the Lithium Chloromolybdate Li[Mo6Cl13] Li[Mo6Cl13] was obtained as single phase product from a solid state reaction of MoCl5, Mo powder, and LiCl at 800 °C. The structure as refined by single crystal X‐ray diffraction, contains one‐dimensional [Mo6Cl Cl Cl ] chains, formed by Cla–a bridges. Lithium ions are located in tunnels along the chain‐direction, each of them being surrounded by a distorted tetrahedral arrangement of outer chlorine ligands (Cla) belonging to four different clusters.  相似文献   

17.
Synthesis of Cadmium Nitride Cd3N2 by Thermolysis of Cadmium Azide Cd(N3)2 and Crystal Structure Determination from X‐ray Powder Diffraction Data Cadmium nitride Cd3N2 was obtained by thermolysis of cadmium azide Cd(N3)2 at 2·10?6 mbar and 210 °C. It was obtained as a black, crystalline powder which becomes brown in air due to formation of cadmium amide Cd(NH2)2. The crystal structure of Cd3N2 was determined from X‐ray powder diffraction data and refined by the Rietveld method ( , a = 10.829(9) Å, V = 1270(3) Å3, Z = 16, R(F2) = 0.1196). Cd3N2 crystallizes in the anti‐bixbyite structure type and is isotypic to Ca3N2.  相似文献   

18.
Preparation and Crystal Structures of New Complex Clorides of Lanthanides containing 3, 5‐Dimethylpyridinium Cations: (3, 5‐Dimethylpyridinium)2[LnCl4(H2O)2]Cl (Ln = La, Pr) and (3, 5‐Dimethylpyridinium)3[TbCl6] Crystals of the complex chlorides (3, 5‐dimethylpyridinium)2[LaCl4(H2O)2]Cl ( 1 ), (3, 5‐dimethylpyridinium)2[PrCl4(H2O)2]Cl ( 2 ) and (3, 5‐dimethylpyridinium)3[TbCl6] ( 3 ) have been prepared by reaction of LnCl3 · x H2O (Ln = La, Pr, Tb; x = 6‐7) with 3, 5‐dimethylpyridiniumchloride in ethanol/butanol solution. The crystal structures have been determined from single crystal X‐ray diffraction data. The compounds 1 and 2 are isotypic with each other and crystallize in the triclinic space group P1¯ (Z = 2). The 3, 5‐dimethylpyridinium cations are linked by hydrogen bonds to the anionic part of the structure built up by isolated chloride ions and strings of edge coupled triangulated dodecahedra [LnCl4/2Cl2(H2O)2]. The organic units are arranged forming a “π‐stacking”. 3 cristallizes monoclinically in the space group P21/c (Z = 4). The structure contains octahedral building units [TbCl6]3—. These octahedra are interconnected by the organic cations via hydrogen bonds forming chains parallel to [0 0 1].  相似文献   

19.
Quaternary Cesium Copper(I) Lanthanoid(III) Selenides of the Type CsCu3M2Se5 (M = Sm, Gd — Lu) By oxidation of mixtures of copper and lanthanoid metal with elemental selenium in molar ratios of 1 : 1 : 2 and in addition of CsCl quaternary cesium copper(I) lanthanoid(III) selenides with the formula CsCu3M2Se5 (M = Sm, Gd — Lu) were obtained at 750 °C within a week from torch‐sealed evacuated silica tubes. An excess of CsCl as flux helps to crystallize golden yellow or red, needle‐shaped, water‐resistant single crystals. The crystal structure of CsCu3M2Se5 (M = Sm, Gd — Lu) (orthorhombic, Cmcm, Z = 4; e. g. CsCu3Sm2Se5: a = 417.84(3), b = 1470.91(8), c = 1764.78(9) pm and CsCu3Lu2Se5: a = 407.63(3), b = 1464.86(8), c = 1707.21(9) pm, respectively) contains [MSe6]9— octahedra which share edges to form double chains running along [100]. Those are further connected by vertices to generate a two‐dimensional layer parallel to (010). By edge‐ and vertex‐linking of [CuSe4]7— tetrahedra two crystallographically different Cu+ cations build up two‐dimensional puckered layers parallel to (010) as well. These sheet‐like structure interconnects the equation/tex2gif-stack-3.gif{[M2Se5]4—} layers to create a three‐dimensional network according to equation/tex2gif-stack-4.gif{[Cu3M2Se5]}. Thus empty channels along [100] form, apt to take up the Cs+ cations. These are surrounded by eight plus one Se2— anions in the shape of (2+1)‐fold capped trigonal prisms with Cs—Se distances between 348 and 368 pm (8×) and 437 (for M = Sm) or 440 pm (for M = Lu), respectively, for the ninth ligand.  相似文献   

20.
The crystal structure of [Lu(HOCH2COO)2(H2O)4][Lu(HOCH2COO)4] ( 1 ) and Dy2(OCH2COO)2(HOCH2COO)2 · 4H2O ( 2) were determined by X‐ray crystallography. The space group of 1 and 2 are P2/c and P21/c, respectively. In 1 , discrete anions and cations held together by hydrogen bonds form the lattice, while the structure of 2 is a 3‐D network of cross‐linked metal‐ligand chains. The lanthanides are eight‐coordinated by chelating glycolate ligands and water molecules with distorted dodecahedral coordination. The core of 2 is a centrosymmetric dimer complex formed by two dysprosium atoms bridged by two oxygen atoms from deprotonated hydroxyl groups of glycolate ligands. The vibration spectra of the crystals were also measured and compared to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号