首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
High‐valent manganese(IV or V)–oxo porphyrins are considered as reactive intermediates in the oxidation of organic substrates by manganese porphyrin catalysts. We have generated MnV– and MnIV–oxo porphyrins in basic aqueous solution and investigated their reactivities in C? H bond activation of hydrocarbons. We now report that MnV– and MnIV–oxo porphyrins are capable of activating C? H bonds of alkylaromatics, with the reactivity order of MnV–oxo>MnIV–oxo; the reactivity of a MnV–oxo complex is 150 times greater than that of a MnIV–oxo complex in the oxidation of xanthene. The C? H bond activation of alkylaromatics by the MnV– and MnIV–oxo porphyrins is proposed to occur through a hydrogen‐atom abstraction, based on the observations of a good linear correlation between the reaction rates and the C? H bond dissociation energy (BDE) of substrates and high kinetic isotope effect (KIE) values in the oxidation of xanthene and dihydroanthracene (DHA). We have demonstrated that the disproportionation of MnIV–oxo porphyrins to MnV–oxo and MnIII porphyrins is not a feasible pathway in basic aqueous solution and that MnIV–oxo porphyrins are able to abstract hydrogen atoms from alkylaromatics. The C? H bond activation of alkylaromatics by MnV– and MnIV–oxo species proceeds through a one‐electron process, in which a MnIV–‐oxo porphyrin is formed as a product in the C? H bond activation by a MnV–oxo porphyrin, followed by a further reaction of the MnIV–oxo porphyrin with substrates that results in the formation of a MnIII porphyrin complex. This result is in contrast to the oxidation of sulfides by the MnV–oxo porphyrin, in which the oxidation of thioanisole by the MnV–oxo complex produces the starting MnIII porphyrin and thioanisole oxide. This result indicates that the oxidation of sulfides by the MnV–oxo species occurs by means of a two‐electron oxidation process. In contrast, a MnIV–oxo porphyrin complex is not capable of oxidizing sulfides due to a low oxidizing power in basic aqueous solution.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Manganese(IV)‐oxo complexes are often invoked as intermediates in Mn‐catalyzed C−H bond activation reactions. While many synthetic MnIV‐oxo species are mild oxidants, other members of this class can attack strong C−H bonds. The basis for these reactivity differences is not well understood. Here we describe a series of MnIV‐oxo complexes with N5 pentadentate ligands that modulate the equatorial ligand field of the MnIV center, as assessed by electronic absorption, electron paramagnetic resonance, and Mn K‐edge X‐ray absorption methods. Kinetic experiments show dramatic rate variations in hydrogen‐atom and oxygen‐atom transfer reactions, with faster rates corresponding to weaker equatorial ligand fields. For these MnIV‐oxo complexes, the rate enhancements are correlated with both 1) the energy of a low‐lying 4E excited state, which has been postulated to be involved in a two‐state reactivity model, and 2) the MnIII/IV reduction potentials.  相似文献   

13.
We report a macrocyclic ligand based on a 3,6,10,13‐tetraaza‐1,8(2,6)‐dipyridinacyclotetradecaphane platform containing four hydroxyethyl pendant arms (L1) that forms extraordinary inert complexes with Ln3+ ions. The [EuL1]3+ complex does not undergo dissociation in 1 M HCl over a period of months at room temperature. Furthermore, high concentrations of phosphate and Zn2+ ions at room temperature do not provoke metal‐complex dissociation. The X‐ray crystal structures of six Ln3+ complexes reveal ten coordination of the ligand to the metal ions through the six nitrogen atoms of the macrocycle and the four oxygen atoms of the hydroxyethyl pendant arms. The analysis of the Yb3+‐ and Pr3+‐induced paramagnetic 1H NMR shifts show that the solid‐state structures are retained in aqueous solution. The intensity of the 1H NMR signal of bulk water can be modulated by saturation of the signals of the hydroxy protons of Pr3+, Eu3+, and Yb3+ complexes following chemical‐exchange saturation transfer (CEST). The ability of these complexes to provide large CEST effects at 25 and 37 °C and pH 7.4 was confirmed by using CEST magnetic resonance imaging experiments.  相似文献   

14.
In the design of physiologically stable anticancer gold(III) complexes, we have employed strongly chelating porphyrinato ligands to stabilize a gold(III) ion [Chem. Commun. 2003 , 1718; Coord. Chem. Rev. 2009 , 253, 1682]. In this work, a family of gold(III) tetraarylporphyrins with porphyrinato ligands containing different peripheral substituents on the meso‐aryl rings were prepared, and these complexes were used to study the structure–bioactivity relationship. The cytotoxic IC50 values of [Au(Por)]+ (Por=porphyrinato ligand), which range from 0.033 to >100 μM , correlate with their lipophilicity and cellular uptake. Some of them induce apoptosis and display preferential cytotoxicity toward cancer cells than to normal noncancerous cells. A new gold(III)–porphyrin with saccharide conjugation [Au(4‐glucosyl‐TPP)]Cl ( 2 a ; H2(4‐glucosyl‐TPP)=meso‐tetrakis(4‐β‐D ‐glucosylphenyl)porphyrin) exhibits significant cytostatic activity to cancer cells (IC50=1.2–9.0 μM ) without causing cell death and is much less toxic to lung fibroblast cells (IC50>100 μM ). The gold(III)–porphyrin complexes induce S‐phase cell‐cycle arrest of cancer cells as indicated by flow cytometric analysis, suggesting that the anticancer activity may be, in part, due to termination of DNA replication. The gold(III)–porphyrin complexes can bind to DNA in vitro with binding constants in the range of 4.9×105 to 4.1×106 dm3 mol?1 as determined by absorption titration. Complexes 2 a and [Au(TMPyP)]Cl5 ( 4 a ; [H2TMPyP]4+=meso‐tetrakis(N‐methylpyridinium‐4‐yl)porphyrin) interact with DNA in a manner similar to the DNA intercalator ethidium bromide as revealed by gel mobility shift assays and viscosity measurements. Both of them also inhibited the topoisomerase I induced relaxation of supercoiled DNA. Complex 4 a , a gold(III) derivative of the known G‐quadruplex‐interactive porphyrin [H2TMPyP]4+, can similarly inhibit the amplification of a DNA substrate containing G‐quadruplex structures in a polymerase chain reaction stop assay. In contrast to these reported complexes, complex 2 a and the parental gold(III)–porphyrin 1 a do not display a significant inhibitory effect (<10 %) on telomerase. Based on the results of protein expression analysis and computational docking experiments, the anti‐apoptotic bcl‐2 protein is a potential target for those gold(III)–porphyrin complexes with apoptosis‐inducing properties. Complex 2 a also displays prominent anti‐angiogenic properties in vitro. Taken together, the enhanced stabilization of the gold(III) ion and the ease of structural modification render porphyrins an attractive ligand system in the development of physiologically stable gold(III) complexes with anticancer and anti‐angiogenic activities.  相似文献   

15.
16.
17.
18.
We report on a novel manganese(III)–porphyrin complex with the formula [MnIII(TPP)(3,5‐Me2pyNO)2]ClO4?CH3CN ( 2 ; 3,5‐Me2pyNO=3,5‐dimethylpyridine N‐oxide, H2TPP=5,10,15,20‐tetraphenylporphyrin), in which the MnIII ion is six‐coordinate with two monodentate 3,5‐Me2pyNO molecules and a tetradentate TPP ligand to build a tetragonally elongated octahedral geometry. The environment in 2 is responsible for the large and negative axial zero‐field splitting (D=?3.8 cm?1), low rhombicity (E/|D|=0.04) of the high‐spin MnIII ion, and, ultimately, for the observation of slow magnetic‐relaxation effects (Ea=15.5 cm?1 at H=1000 G) in this rare example of a manganese‐based single‐ion magnet (SIM). Structural, magnetic, and electronic characterizations were carried out by means of single‐crystal diffraction studies, variable‐temperature direct‐ and alternating‐current measurements and high‐frequency and ‐field EPR spectroscopic analysis followed by quantum‐chemical calculations. Slow magnetic‐relaxation effects were also observed in the already known analogous compound [MnIII(TPP)Cl] ( 1 ; Ea=10.5 cm?1 at H=1000 G). The results obtained for 1 and 2 are compared and discussed herein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号