首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations into Tin(IV) Alkoxides. I. Crystal and Molecular Structure of Tin(IV)-isopropoxide-Isopropanol Solvate, Sn(OiPr)4 · i-PrOH The isopropanol complex of tin(IV)-isopropoxide has been prepared by the reaction of tin tetrachloride with sodium isopropoxide. The compound forms colourless, moisture sensitive crystals, which in dry air easily release the coordinated solvent molecules. The crystal and molecular structure of Sn(OiPr)4 · i-PrOH has been determinated by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P21/c with a = 1174.2(5), b = 1428.5(3), c = 1234.1(3) pm, β = 95.37(1)° and Z = 4. The crystal structure consists of discrete, dimeric molecules in which the two tin atoms are bridged by two alkoxide groups. The octahedral coordination sphere of each tin atom is completed by one solvent molecule which, in addition, forms one hydrogen bridge to an alkoxide group of the neighboring tin atom.  相似文献   

2.
Polysulfonylamines. CXVI. Destructive Complexation of the Dimeric Diorganyltin(IV) Hydroxide [Me2Sn(A)(μ‐OH)]2 (HA = Benzene‐1,2‐disulfonimide): Formation and Structures of the Mononuclear Complexes [Me2Sn(A)2(OPPh3)2] and [Me2Sn(phen)2]2⊕ · 2 A · MeCN Destructive complexation of the dimeric hydroxide [Me2Sn(A)(μ‐OH)]2, where A is deprotonated benzene‐1,2‐disulfonimide, with two equivalents of triphenylphosphine oxide or 1,10‐phenanthroline in hot MeCN produced, along with Me2SnO and water, the novel coordination compounds [Me2Sn(A)2(OPPh3)2] ( 3 , triclinic, space group P 1) and [Me2Sn(phen)2]2⊕ · 2 A · MeCN ( 4 , monoclinic, P21/c). In the uncharged all‐trans octahedral complex 3 , the heteroligands are unidentally O‐bonded to the tin atom, which resides on a crystallographic centre of inversion [Sn–O(S) 227.4(2), Sn–O(P) 219.6(2) pm, cis‐angles in the range 87–93°; anionic ligand partially disordered over two equally populated sites for N, two S and non‐coordinating O atoms]. The cation occurring in the crystal of 4 has a severely distorted cis‐octahedral C2N4 coordination geometry around tin and represents the first authenticated example of a dicationic tin(IV) dichelate [R2Sn(L–L′)2]2⊕ to adopt a cis‐structure [C–Sn–C 108.44(11)°]. The five‐membered chelate rings are nearly planar, with similar bite angles of the bidentate ligands, but unsymmetric Sn–N bond lengths, each of the longer bonds being trans to a methyl group [ring 1: N–Sn–N 71.24(7)°, Sn–N 226.81(19) and 237.5(2) pm; ring 2: 71.63(7)°, 228.0(2) and 232.20(19) pm]. In both structures, the bicyclic and effectively CS symmetric A ions have their five‐membered rings distorted into an envelope conformation, with N atoms displaced by 28–43 pm from the corresponding C6S2 mean plane.  相似文献   

3.
Sn3N4, a Tin(IV) Nitride – Syntheses and the First Crystal Structure Determination of a Binary Tin-Nitrogen Compound By reaction of SnI4 with KNH2 in liquid ammonia at 243 K a white product mixture was obtained. After evaporation of ammonia the solid residue was annealed in vacuum for 2–5 d at 573 K. Subsequently collected x-ray powder diffraction patterns exhibited reflections of KI and a new compound Sn3N4. Analogous reactions of SnBr2 and KNH2 led to KBr and dark brown microcrystalline Sn3N4 but also to metallic tin. The structure of tin(IV)-nitride was determined from X-ray and neutron powder diffraction data: Space group Fd 3 m, Z = 8, a = 9.037(3) Å. Sn3N4 crystallizes in a spinel type structure. Both metal atom positions are occupied by tin atoms of oxidation state plus four.  相似文献   

4.
Investigations into Tin(IV) Alkoxides. II. Isolation and Characterization of the Compound Sn3O(OiBu)1010 · 2i-BuOH. The First Example of a Partially Hydrolized Tin(IV) Alkoxide The partial hydrolysis product Sn3O(OiBu)10 · 2i-BuOH was obtained by slow hydrolysis of the reaction product of tin tetrachloride with sodium isobutoxide. The compound forms colourless, moisture sensitive crystals, which easily release the coordinated solvent molecules in dry air. Its crystal and molecular structure has been determinated by single crystal X-ray diffraction. The compound crystallizes in the triclinic space group P1 with a = 1363.5(7), b = 1462.7(10), c = 1637.7(7) pm, α = 95.40(5)°, β = 96.79(4)°, γ = 102.12(5)° and Z = 2. The crystal structure consists of discrete, trimeric molecules with octahedrally coordinated tin atoms which are connected to each other corresponding to the formulation Sn33-O)(μ2-OiBu)3(O1Bu)7 · (i-BuOH)2 by three isobutoxide groups bridging two metal atoms and a single threefold bridging oxygen atom  相似文献   

5.
Synthesis and Crystal Structure of the Holmium(III) Chloride Oxotellurate(IV) HoClTeO3 Orange coloured, rod—shaped single crystals of the holmium( III) chloride oxotellurate(IV) HoClTeO3 (orthorhombic, Pnma; a = 730.25(5), b = 696.54(5), c = 905.18(7) pm; Z = 4) are obtained during attempts to synthesize holmium(III) oxochlorotellurates(IV) by reaction of holmium oxychloride (HoOCl) and tellurium dioxide (TeO2; 1:1—2molar ratio, 800 °C, 40 d) in evacuated silica tubes. The crystal structure contains sevenfold coordinated Ho 3+ cations surrounded by five oxide and two chloride anions forming a pentagonal bipyramid. Interconnection of the [Ho(O1)(O2)4Cl2] polyhedra occurs via two edges made of four equatorial oxygen atoms (O2) under formation of {[Ho(O1)(O2)4/2Cl2/1]5‐} chains running parallel [010]. These arrange as hexagonal closest packing of rods and are linked to each other by Cl anions to a three—dimensional {[Ho(O1)1/1(O2)4/2Cl2/2]4‐} network. All Te4+ cations are embedded therein and exhibit ψ1—tetrahedral coordination figures as discrete anionic [Te(O1)(O2)2]2‐ pyramids due to the stereochemical activity of the non—binding electron pairs („lone pairs”︁). They stabilize the {[HoO3Cl]4‐} network via covalent bonds to one axial (O1) and two equatorial oxygen atoms (O2) of each [HoO5Cl2] polyhedron.  相似文献   

6.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

7.
Barium Stannate Powders from Hydrothermal Synthesis and by Thermolysis of Barium‐Tin(IV)‐Glycolates. Synthesis and Structure of [Ba(C2H6O2)4][Sn(C2H4O2)3] and [Ba(C2H6O2)2][Sn(C2H4O2)3]·CH3OH The hydrothermal reaction as well as the microwave assisted hydrothermal reaction of SnO2·aq with barium hydroxide gives Ba[Sn(OH)6] ( 1 ) as powder with bar like particles. Compound 1 of the same morphology can also be isolated from a hydrothermal reaction of [Ba(C2H6O2)4][Sn(C2H4O2)3] ( 3 ). The reaction of SnO2·aq with Ba(OH)2·8H2O in ethylene glycol yields the glycolate [Ba(C2H6O2)4][Sn(C2H4O2)3] ( 3 ), which forms in methanol the solvate [Ba(C2H6O2)2][Sn(C2H4O2)3]·CH3OH ( 4 ). Compounds 1 , 3 and 4 react at different temperatures to BaSnO3 ( 2 ) consisting of powders with different morphologies; because of the grain size of the resulting powders compounds 3 and 4 are suitable as precursor for the fabrication of corresponding ceramics.  相似文献   

8.
Synthesis and Crystal Structures of 1,1,3,3‐Tetramethylimidazolinium Dichloride and 1,1,4‐Trimethylpiperazinium Chloride Single crystals of 1,1,3,3‐tetramethylimidazolinium dichloride ( 1 ) and 1,1,4‐trimethylpiperazinium chloride ( 2 ) were obtained by reaction of CH2Cl2 with tetramethylethylenediamine (TMEDA) and NNN′N″N″‐pentamethyldiethylenetriamine (PMDETA), respectively. Both compounds are characterized by single crystal X‐ray diffraction and by IR spectroscopy. 1: [C7H18N2]Cl2, space group P21/c, Z = 4, lattice dimensions at 193(2) K: a = 821.97(11), b = 1130.38(8), c = 1143.08(13) pm, β = 100.348(15)°, R1 = 0.0271. The C7N2 heterocyclic ring has envelope conformation like other salts with this dication. 2: [C7H17N2]Cl, space group P212121, Z = 4, lattice dimensions at 100(2) K: a = 1030.37(8), b = 1036.55(6), c = 831.39(4) pm, R1 = 0.0180. Although the heterocyclic mono‐cation is without site symmetry in the crystal, its molecular symmetry is close to Cs, forming chair conformation of the C4N2 six‐membered ring.  相似文献   

9.
Novel Halogenochalcogeno(IV) Acids: [H3O(Benzo‐18‐Crown‐6)]2[Te2Br10] and [H5O2(Dibenzo‐24‐Crown‐8)]2[Te2Br10] Systematic studies on halogenochalcogeno(IV) acids containing tellurium and bromine led to the new crystalline phases [H3O(Benzo‐18‐Crown‐6)]2[Te2Br10] ( 1 ) and [H5O2(Dibenzo‐24‐Crown‐8)]2[Te2Br10] ( 2 ). The [Te2Br10]2‐ anions consists of two edge‐sharing distorted TeBr6 octahedra, the oxonium cations are stabilized by crownether. ( 1 ) crystallizes in the monoclinic space group P21/n with a = 14.520(5) Å, b = 22.259(6) Å, c = 16.053(5) Å, β = 97.76(3)° and Z = 4, whereas ( 2 ) crystallizes in the triclinic space group with a = 11.005(4) Å, b = 12.103(5) Å, c = 14.951(6) Å, α = 71.61(3)°, β = 69.17(3)°, γ = 68.40(3)° and Z = 1.  相似文献   

10.
Molecular and Crystal Structure of Rubidium(dibenzo‐18‐crown‐6)pentaiodide [Rb(C20H24O6)]I5 [Rb(Dibenzo‐18‐crown‐6)]2(I5)2 is obtained as dark brown columns by reacting dibenzo‐18‐crown‐6, rubidium iodide, and iodine in a molar ratio of 1 : 1 : 6 in ethanole / dichlormethane (1:1). [Rb(C20H24O6)]2(I5)2 crystallizes with four formula units per unit cell in the orthorhombic space group Pnma with a = 1725.15(2) pm, b = 1863.76(3) pm and c = 1885.19(3) pm. The crystal structure consists of pentaiodide units I5, which are linked to one another by head‐to‐tail‐contacts. The I2 units, which stick out of the chain, are twisted against each other, in a way that neither a cis or a trans configuration is formed. By secondary bonding, the iodine atoms form nets of 18‐member planar rings with an almost rectangular form. This net‐like structural element has not been described up to now.  相似文献   

11.
Pnictogenidostannates(IV) with Discrete Tetrahedral Anions: New Representatives (E1)4(E2)2[Sn(E15)4] (with E1 = Na, K; E2 = Ca, Sr, Ba; E15 = P, As, Sb, Bi) of the Na6[ZnO4] Type and the Superstructure Variant of K4Sr2[SnAs4] The silvery to dark metallic lustrous compounds (E1)4(E2)2[Sn(E15)4] (E1 = Na, K; E2 = Ca, Sr, Ba; E15 = P, As, Sb, Bi) were prepared from melts of stoichiometric mixtures of the elements. They crystallize in the Na6[ZnO4]‐type structure (hexagonal, space group: P63mc, Z = 2; Na4Ca2[SnP4]: a = 938.94(7), c = 710.09(8) pm; K4Sr2[SnAs4]: a = 1045.0(2), c = 767.0(1) pm; K4Ba2[SnP4]: a = 1029.1(6), c = 780.2(4) pm; K4Ba2[SnAs4]: a = 1051.3(1), c = 795.79(7) pm; K4Ba2[SnSb4]: a = 1116.9(2), c = 829.2(1) pm; K4Ba2[SnBi4]: a = 1139.5(2), c = 832.0(2) pm). The anionic partial structure consists of tetrahedra [Sn(E15)4]8– orientated all in the same direction along [001]. In the cationic partial structure one of the two cation positions is occupied statistically by alkali and alkaline earth metal atoms. Up to now only for K4Sr2[SnAs4] a second modification could be isolated, forming a superstructure type with three times the unit cell volume (hexagonal, space group: P63cm, Z = 6; a = 1801.3(2), c = 767.00(9) pm) and an ordered cationic partial structure.  相似文献   

12.
Synthesis and Crystal Structure of 2‐Azido‐4,6‐dichloro‐s‐triazine Single crystals of 2‐azido‐4,6‐dichloro‐s‐triazine were obtained from a reaction between cyanuric chloride and sodium azide. The structure of this compound was determined by single crystal X‐ray diffraction. 2‐Azido‐4,6‐dichloro‐s‐triazine crystallizes in the orthorhombic space group Pbca (no. 61), Z = 8, a = 746.48(8) pm, b = 952.6(1) pm, c = 2001.6(2) pm. The crystal structure contains (C3N3)(N3)Cl2 molecules being arranged in a tape‐like fashion, with tapes running along a‐axis direction. The tapes are combined with each other by interlocking azide‐ligands including an angle of approximately 90°. This arrangement leads to the formation of corrugated layers in the crystal structure.  相似文献   

13.
Crystal Structure of Cesiumtetrafluorooxotellurate(IV) Cs2TeOF4 Solid state reaction of cesium fluoride, cesium pentafluorotellurate(IV), and tellurium dioxide in the molar ratio 3 : 1 : 1 yields colourless single crystals of cesium tetrafluorooxotellurate(IV). The compound crystallizes in a structure analogous to potassium pentafluoroantimonate(III) (Cmcm, Z = 4, a = 669.5(1), b = 1464.0(2), c = 717.09(7) pm). The characteristic feature is the presence of discrete pseudooctahedral tetrafluorooxotellurate(IV) anions. The structure of this complex anion could be determined for the first time. It contains a short Te–Oax bond of 177.5 pm (bond order about 1.7) and long Te–Feq bonds of 207.2 pm (bond order about 0.6). The position of the tellurium atom deviates only slightly from the equatorial plane (Oax–Te–Feq: 89.0°).  相似文献   

14.
Preparation, Crystal Structure and Normal Coordinate Analysis of Linkage Isomeric Pentachlororhodanoosmates(IV) By treatment of [OsCl5I]2? with (SCN)2 in dichloromethane the linkage isomers [OsCl5(NCS)]2? and [OsCl5(SCN)]2? are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. The X-ray structure determination on single crystals of (Ph4As)2[OsCl5(NCS)] (monoclinic, space group P21/a, a = 18.872(2), b = 11.6024(2), c = 22.786(1), β = 109.057(1)°, Z = 4) and (Ph4As)2[OsCl5(SCN)] (monoclinic, space group P21/a, a = 19.057(2), b = 11.306(2), c = 22.612(1), β = 106.64(2)°, Z = 4) reveals the complete ordering of the complex anions. The thiocyanate group is located above one of the Cl ligands of the equatorial plane with the Os? N? C angle of 166.1° for N bonding and the Os? S? C angle of 109.9° for S bonding. The IR and Raman spectra of both linkage isomers known from literature are assigned by normal coordinate analysis based on the general valence force field using the molecular parameters of the X-ray determination. The valence force constants are fd(OsN) = 1,81 and fd(OsS) = 1,32 mdyn/Å. Taking into account increments of the trans influence a good adjustment between observed and calculated frequencies is achieved.  相似文献   

15.
The syntheses and single crystal X‐ray structure determinations are reported for [Li(thf)4][SnCl5(thf)] ( 1 ) and {[Li(Et2O)2]2‐(μ‐Cl2)2‐SnIVCl2} ( 2 ). Compound 1 is ionic with a tetrahedral coordinated lithium cation and distorted octahedral tin (IV) atom in the anion, while compound ( 2 ) is a centrosymmetric heteronuclear double salt of LiCl and SnCl4. [Li(thf)4][SnCl5(thf)] is monoclinic, P21/n, a = 11.204(1), b = 15.599(1), c = 17.720(2) Å; β = 96.734(2)°, Z = 4, R 0.0418; {[Li(Et2O)2]2‐(μ‐Cl2)2‐SnIVCl2} is monoclinic, P21/n, a = 10.848(2), b = 12.764(2), c = 11.748(2) Å; β = 90.388(3)°, Z = 4, R = 0.0851.  相似文献   

16.
Preparation and Crystal Structure of Na2Sn2Se5 A Novel Chalcogenostannate(IV) with Layered Complex Anions Na2Sn2Se5 was obtained from a stoichiometric mixture of Na2Se, Sn, and Se powders through a solid state reaction at 450 °C. It crystallizes orthorhombic, space group Pbca with a = 13.952(6) Å, b = 12.602(2) Å, c = 11.524(2) Å; Z = 8 and undergoes peritectic decomposition at 471(2) °C. The crystal structure was determined at ambient temperature from diffractometer data (MoKα‐radiation) and refined to a conventional R of 0.040 (1490 Fo's, 83 variables). Na2Sn2Se5 is characterized by layered complex anions running parallel to (100) which are built up by SnSe4 tetrahedra sharing common corners. The mean Sn–Se bond length calculates as 2.252(2) Å. The Na+ cations are coordinated to 6 or 7 Se in irregular configurations. The crystal structure can be described as a stacking of distorted c. p. 36 chalcogen layers and mixed square 44 alkali‐chalcogen layers.  相似文献   

17.
Synthesis and Crystal Structure of a Ditelluridovanadium(IV) Complex: [(μ‐η1‐Te2)(μ‐NtBu)2V2Cp2] [(μ‐η1‐Te2)(μ‐NtBu)2V2Cp2] ( 2 ) is formed from [tBuN = VCp(PMe3)2] ( 1 ) upon reaction with elemental tellurium. 1 and 2 are characterized by spectroscopic methods (MS; 1H, 13C, 51V NMR), in addition 2 by single crystal X‐ray diffraction. The crystal structure indicates a folded cyclodivanadazen ring bridged by a bidentated ditellurido ligand, the first example of this structure type.  相似文献   

18.
Synthesis and Crystal Structure Determination of Lead(II) Oxide Halide Alcoholates with Different Connectivity of Pb4O4 Heterocubane‐like Subunits The reaction of red lead(II) oxide (Litharge) and lead(II) halide (Cl? and Br?) with diethylene glycole at a temperature of 180 °C leads to the isotypic compounds [Pb6(C4H8O3)O2Cl6] (1) and [Pb6(C4H8O3)O2Br6] (2) . In a similar synthesis with PbI2 as educt at temperature of 160 °C the two modifications β‐[Pb6(C4H8O3)O2I6] (3) and α‐[Pb6(C4H8O3)O2I6] (4) were found, whereas at a reaction temperature of 180 °C [Pb9(C2H4O2)(C4H8O3)O3I8] (5) was surprisingly obtained as product. The X‐ray diffraction data show that at a temperature of 180 °C a splitting of the ether took place. The cited compounds show cubane like subunits built by lead and oxygen atoms. These fragments are connected by alkoholate molecules. In 5 additionally an I6 octahedra centered by lead is observed.  相似文献   

19.
Synthesis, Crystal Structure, and Properties of Vanadium(II) Tetrachloroaluminate The reaction of vanadium dichloride and aluminium trichloride yields vanadium(II) tetrachloroaluminate. Amber cuboid crystals can be obtained by slow cooling of the melt. V(AlCl4)2 crystallizes in the monoclinic space group I2/c (a = 1284.6(3), b = 776.3(2), c = 1163.5(2) pm, β = 92.376(10)°) and is therefore isotypic to Co(AlCl4)2. The structure contains chains build of VCl6 octahedra and AlCl4 tetrahedra sharing corners and edges with each other. The temperature dependence of the magnetic susceptibility follows Curie‐Weiss behaviour (μ = 3.88(2) μB, Θ = ?9(1) K) complying with the spin‐only paramagnetism expected of d3 ions.  相似文献   

20.
Preparation and Crystal Structure of the Hexaselenodiphosphates(IV) of Antimony and Bismuth Sb4(P2Se6)3 and Bi4(P2Se6)3 are synthesized from the elements via chemical transport reactions with iodine. The isotypic compounds crystallize in the monoclinic space group P21/n (No. 14) with lattice parameters a = 2 077.7(4) pm, b = 749.35(5) pm, c = 949.49(8) pm, β = 91.25(1)° for Sb4(P2Se6)3 and a = 2 086.9(3) pm, b = 747.45(6) pm, c = 959.23(6) pm, β = 91.73(1)° for Bi4(P2Se6)3, respectively. This new structure type is closely related to the structure of Pb2P2Se6 showing an ordered cation distribution combined with a reorientation of the ethane like [P2Se6]4? units. From the interatomic distances in the coordination spheres a smaller lone pair effect of BiIII compared to SbIII may be deduced. For both compounds UV/VIS spectra and temperature dependence of the electrical resistivity are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号