首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the convergence of a finite volume scheme for a model of miscible two‐phase flow in porous media. In this model, one phase can dissolve into the other one. The convergence of the scheme is proved thanks to an estimate on the two pressures, which allows to prove some estimates on the discrete time derivative of some nonlinear functions of the unknowns. Monotony arguments allow to show some properties on the limits of these functions. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the space term. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 723–748, 2014  相似文献   

2.
This article deals with the numerical approximation of miscible displacement problem of one incompressible fluid in a porous medium. The adopted formulation is based on the combined use of a mixed finite‐element scheme to treat pressure equation and of the finite‐element approach to treat concentration equation. Optimal‐order error estimates are obtained under some milder mesh‐parameter constraints. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 707–719, 2012  相似文献   

3.
We study numerical approximations of positive solutions of the porous medium equation with a nonlinear source, where m > 1, p > 0 and L > 0 are parameters. We describe in terms of p, m, and L when solutions of a semidiscretization in space exist globally in time and when they blow up in a finite time. We also find the blow‐up rates and the blow‐up sets, proving that there is no regional blow‐up for the numerical scheme. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

4.
We present a scheme for solving two‐dimensional, nonlinear reaction‐diffusion equations, using a mixed finite‐element method. To linearize the mixed‐method equations, we use a two grid scheme that relegates all the Newton‐like iterations to a grid ΔH much coarser than the original one Δh, with no loss in order of accuracy so long as the mesh sizes obey . The use of a multigrid‐based solver for the indefinite linear systems that arise at each coarse‐grid iteration, as well as for the similar system that arises on the fine grid, allows for even greater efficiency. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 317–332, 1999  相似文献   

5.
A nonlinear model for a steady flow in a deformable porous medium is considered. The flow is governed by the poroelasticity system consisting of an elasticity equation for the displacement of the porous medium and Darcy's equation for the pressure in the fluid. This poroelasticity system is nonlinear when the permeability in Darcy's equation is assumed to depend on the dilatation of the porous medium. Existence and uniqueness of a weak solution of this poroelasticity system is established under rather weak assumptions on the regularity of the data. Convergence of a finite element approximation is proved and verified through numerical experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
We develop 2‐grid schemes for solving nonlinear reaction‐diffusion systems: where p = (p, q) is an unknown vector‐valued function. The schemes use discretizations based on a mixed finite‐element method. The 2‐grid approach yields iterative procedures for solving the nonlinear discrete equations. The idea is to relegate all the Newton‐like iterations to grids much coarser than the final one, with no loss in order of accuracy. The iterative algorithms examined here extend a method developed earlier for single reaction‐diffusion equations. An application to prepattern formation in mathematical biology illustrates the method's effectiveness. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 589–604, 1999  相似文献   

7.
In this article, we consider the simulation of a compositional model for three‐dimensional, three‐phase, multicomponent flow in a porous medium. This model consists of Darcy's law for volumetric flow velocities, mass conservation for hydrocarbon components, thermodynamic equilibrium for mass interchange between phases, and an equation of state for saturations. A discretization scheme based on the block‐centered finite difference method for pressures and compositions is developed. Numerical results are reported for the benchmark problem of the third comparative solution project (CSP) organized by the society of petroleum engineers (SPE). © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

8.
We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two‐phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
We present an H1‐Galerkin mixed finite element method for a nonlinear parabolic equation, which models a compressible fluid flow process in subsurface porous media. The method possesses the advantages of mixed finite element methods while avoiding directly inverting the permeability tensor, which is important especially in a low permeability zone. We conducted theoretical analysis to study the existence and uniqueness of the numerical solutions of the scheme and prove an optimal‐order error estimate for the method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

10.
We study the homogenization of a slow viscous two‐phase incompressible flow in a domain consisting of a free fluid domain, a porous medium, and the interface between them. We take into account the capillary forces on the fluid‐fluid interfaces. We construct boundary layers describing the flow at the interface between the free fluid and the porous medium. We derive a macroscopic model with a viscous two‐phase fluid in the free domain, a coupled Darcy law connecting two‐phase velocities in the porous medium, and boundary conditions at the permeable interface between the free fluid domain and the porous medium.  相似文献   

11.
Biot's consolidation theory is extended to a general class of viscoelastic bodies defined by Riemann-Stieltjes integral convolutions. From a new reciprocity theorem, proved for the governing equations including the inertia terms, the basic integral representations of the displacement fields and pore pressure are obtained. It is shown that, in the absence of internal inputs, a formulation of the dynamic problem in terms of the boundary unknown fields only is possible.  相似文献   

12.
We present a mass conservative numerical scheme for reactive solute transport in porous media. The transport is modeled by a convection-diffusion-reaction equation, including equilibrium sorption. The scheme is based on the mixed finite element method (MFEM), more precisely the lowest-order Raviart-Thomas elements and one-step Euler implicit. The underlying fluid flow is described by the Richards equation, a possibly degenerate parabolic equation, which is also discretized by MFEM. This work is a continuation of Radu et al. (2008) and Radu et al. (2009) [1] and [2] where the algorithmic aspects of the scheme and the analysis of the discretization method are presented, respectively. Here we consider the Newton method for solving the fully discrete nonlinear systems arising on each time step after discretization. The convergence of the scheme is analyzed. In the case when the solute undergoes equilibrium sorption (of Freundlich type), the problem becomes degenerate and a regularization step is necessary. We derive sufficient conditions for the quadratic convergence of the Newton scheme.  相似文献   

13.
We investigate the stability and convergence of a fully implicit, linearly extrapolated second‐order backward difference time‐stepping scheme for the penalized Navier–Stokes equations modeling filtration through porous media. In the penalization approach, an extended Navier–Stokes equation is used in the entire computational domain with suitable resistance terms to mimic the presence of porous medium. It is widely used as an alternative to the heterogeneous approach in which different types of partial differential equations (PDEs) are used in fluid and porous subregions along with suitable continuity conditions at the interface. However, the introduction of extra resistance terms makes the penalized Navier–Stokes equations more nonlinear. We prove that the linearly extrapolated scheme is unconditionally stable and derive optimal order error estimates without any stability condition. To show feasibility and applicability of the approach, it is used to numerically solve a passive control problem in which flow around a solid body is controlled by adding porous layers on the surface. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 681–705, 2016  相似文献   

14.
A two‐grid stabilized mixed finite element method based on pressure projection stabilization is proposed for the two‐dimensional Darcy‐Forchheimer model. We use the derivative of a smooth function, , to approximate the derivative of in constructing the two‐grid algorithm. The two‐grid method consists of solving a small nonlinear system on the coarse mesh and then solving a linear system on the fine mesh. There are a substantial reduction in computational cost. We prove the existence and uniqueness of solution of the discrete schemes on the coarse grid and the fine grid and obtain error estimates for the two‐grid algorithm. Finally, some numerical experiments are carried out to verify the accuracy and efficiency of the method.  相似文献   

15.
16.
A finite‐volume scheme for the stationary unipolar quantum drift‐diffusion equations for semiconductors in several space dimensions is analyzed. The model consists of a fourth‐order elliptic equation for the electron density, coupled to the Poisson equation for the electrostatic potential, with mixed Dirichlet‐Neumann boundary conditions. The numerical scheme is based on a Scharfetter‐Gummel type reformulation of the equations. The existence of a sequence of solutions to the discrete problem and its numerical convergence to a solution to the continuous model are shown. Moreover, some numerical examples in two space dimensions are presented. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1483–1510, 2011  相似文献   

17.
In this article, we study the long‐time stability and asymptotic behavior of the immersed finite element (IFE) method for the multilayer porous wall model for the drug‐eluting stents. First, with the IFE method for the spatial descretization, and the implicit Euler scheme for the temporal discretization, respectively, we deduce the global stability of fully discrete solution. Then, we investigate the asymptotic behavior of the discrete scheme which reveals that the multilayer porous wall model converges to the corresponding elliptic equation if approaches to a steady‐state in both and norms as . Finally, some numerical experiments are given to verify the theoretical predictions.  相似文献   

18.
The flow of a gas through porous medium is considered in the case of pressure dependent permeability and viscosity. Approximate self-similar solutions of the boundary-value problems are found.  相似文献   

19.
We consider a non‐stationary Stokes system in a thin porous medium Ω? of thickness ? which is perforated by periodically solid cylinders of size a ? . We are interested here to give the limit behavior when ? goes to zero. To do so, we apply an adaptation of the unfolding method. Time‐dependent Darcy's laws are rigorously derived from this model depending on the comparison between a ? and ? . Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
We study the superconvergence of the finite volume element (FVE) method for solving convection‐diffusion equations using bilinear trial functions. We first establish a superclose weak estimate for the bilinear form of FVE method. Based on this estimate, we obtain the H1‐superconvergence result: . Then, we present a gradient recovery formula and prove that the recovery gradient possesses the ‐order superconvergence. Moreover, an asymptotically exact a posteriori error estimate is also given for the gradient error of FVE solution.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1152–1168, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号