首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stress–strain diagrams and ultimate tensile properties of uncompatibilized and compatibilized hydrogenated polybutadiene‐block‐poly(methyl methacrylate) (HPB‐b‐PMMA) blends with 20 wt % poly(methyl methacrylate) (PMMA) droplets dispersed in a low‐density polyethylene (LDPE) matrix were studied. The HPB‐b‐PMMA pure diblock copolymer was prepared via controlled living anionic polymerization. Four copolymers, in terms of the molecular weights of the hydrogenated polybutadiene (HPB) and PMMA sequences (22,000–12,000, 63,300–31,700, 49,500–53,500, and 27,700–67,800), were used. We demonstrated with the stress–strain diagrams, in combination with scanning electron microscopy observations of deformed specimens, that the interfacial adhesion had a predominant role in determining the mechanism and extent of blend deformation. The debonding of PMMA particles from the LDPE matrix was clearly observed in the compatibilized blends in which the copolymer was not efficiently located at the interface. The best HPB‐b‐PMMA copolymer, resulting in the maximum improvement of the tensile properties of the compatibilized blend, had a PMMA sequence that was approximately half that of the HPB block. Because of the much higher interactions encountered in the PMMA phase in comparison with those in HPB (LDPE), a shorter sequence of PMMA (with respect to HPB but longer than the critical molecular weight for entanglement) was sufficient to favor a quantitative location of the copolymer at the LDPE/PMMA interface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 22–34, 2005  相似文献   

2.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   

3.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

4.
An in situ dielectric measurement for atactic poly(methyl methacrylate) (at‐PMMA) was performed under high‐pressure CO2 under various pressures and temperatures. The at‐PMMA has the acetate side group with a large dipole moment. In the glassy state, a local relaxation process (β‐process) can be observed using dielectric measurement. In the rubbery state, the micro‐Brownian motion of main chain (α‐process) occurs, and the β‐process changes into αβ‐process coordinated with the α‐process. The dielectric loss (ε″) spectrum of at‐PMMA in the glassy state is asymmetric because of the density fluctuation for the amorphous structure. The loss peak frequency shifted to higher frequencies, and the relaxation strength increased with increasing CO2 pressure. In the glassy state, the shape of ε″ spectrum became more symmetric with increasing CO2 pressure. These show that the molecular mobility enhanced by the plasticization effect of CO2 allows the dipolar side groups in the high‐density region to contribute to the relaxation process. We also found that the apparent activation energy decreased under high‐pressure CO2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2951–2962, 2005  相似文献   

5.
Simultaneous IPNs of poly(dimethyl siloxane-urethane) (PDMSU)/poly(methyl methacrylate) (PMMA) and related isomers have been prepared by using new oligomers of bis(β-hydroxyethoxymethyl)poly(dimethyl siloxane)s (PDMS diols) and new crosslinkers biuret triisocyanate (BTI) and tris(β-hydroxylethoxymethyl dimethylsiloxy) phenylsilane (Si-triol). Their phase morphology have been characterized by DSC and SEM. The SEM phase domain size is decreased by increasing crosslink density of the PDMSU network. A single phase IPN of PDMSU/PMMA can be made at an Mc = 1000 and 80 wt % of PDMSU. All of the pseudo- or semi-IPNs and blends of PDMSU and PMMA were phase separated with phase domain sizes ranging from 0.2 to several micrometers. The full IPNs of PDMSU/PMMA have better thermal resistance compared to the blends of linear PDMSU and linear PMMA. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 85–93, 1998  相似文献   

7.
Polyurethane (PU) based on polyepichlorohydrin/poly(methyl methacrylate) (PECH/PMMA) interpenetrating polymer networks (IPNs) was synthesized by a simultaneous method. The effects of composition, hydroxyl group number of PECH, NCO/OH ratio and crosslinking agent content in IPNs were investigated in detail. Some other glycols, such as poly(ethylene glycol), poly(propylene glycol) and hydroxyl-terminated polybutadiene, were also used to obtain PU/PMMA IPNs. The interpenetrating and fracture behaviors of the IPNs are explained briefly.  相似文献   

8.
9.
Various PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends were selected for mechanical testing in compression. At low PVDF content (less than 50/50 w/w), the blends remain amorphous and PVDF and PMMA are fully miscible. In PVDF-richer blends, PVDF crystallizes in part, leading to a PMMA-enriched homogeneous amorphous phase. In this study, the degree of crystallinity was set at equilibrium by appropriate annealing of the samples before testing. Mechanical analysis was focused on the low deformation range, and especially on the yield region. Depending on the test temperature and blend composition, three types of response were identified, depending on whether plastic deformation is influenced: 1) by the PMMA secondary relaxation motions, 2) by the PVDF/PMMA glass transition motions, or 3) by the crystallite-constrained PVDF chains.  相似文献   

10.
Complex permittivity of poly(4‐tetrahydropyranyl methacrylate) (P4THPMA) was measured by dielectric spectroscopy. The spectra obtained show several relaxation processes labeled as δ, γ, β, and α in increasing order of temperature. These processes have been characterized and assigned to specific molecular motions. Comparison of the dielectric activity obtained for P4THPMA with those reported for poly(1,3‐dioxan‐5‐yl‐methacrylate) (PDMA) and poly(cyclohexyl methacrylate) (PCHMA) was performed. In fact, these three polymers have similar chemical structures with aliphatic rings in the ester residue. However, significant differences between the dielectric behavior of these polymers have been observed. In addition, complementary molecular mechanic (MM) calculations have been carried out. The energy barriers obtained by these calculations lead to energy barriers which are in relatively good agreement with those derived from the dielectric measurement by means Arrhenius plots. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3135–3147, 2006  相似文献   

11.
Densely branched poly(methyl methacrylate)s have been synthesized by copolymerization of methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) using atom transfer free radical polymerization (ATRP). By employing the phenyl and benzyl esters of 2-bromo-2-methylpropionic acid as the initiators with 2,2-bipyridyl and Cu(I)Cl it has been possible to use high field 1H nuclear magnetic resonance spectroscopy to evaluate in some detail the composition and structure of the branched PMMAs obtained. Parallel molar mass size exclusion chromatographic analysis using a multi-angle light scattering detector with a refractive index detector (MALS/SEC) has allowed the branched architecture of the products to be confirmed. Rather remarkably, high yields of branched PMMAs can be obtained without crosslinking using MMA/EGDMA molar feed ratios of up to 5/1 by appropriate adjustment of the molar feed of initiator. In particular by maintaining the EGDMA/initiator molar feed ratio ∼1/1 fully soluble products can be obtained that are densely branched since this feed ratio ensures that on average each living primary chain initiated contains on average only one branching EGDMA segment. As might be expected this controlled free radical process offers better control in the synthesis of branched polymer than the corresponding system we have reported using conventional free radical polymerization, and unlike the latter which requires the use of a chain transfer agent, the ATRP system requires no additional chain regulating component. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2375–2386, 2007  相似文献   

12.
The variation of the indentation hardness of a high molecular weight poly(methyl methacrylate) (PMMA) subjected to CO2 and Ar at high pressure was measured in situ. The samples were subjected to gas exposure for 3 h at 40 °C before a conical indenter of an included angle at 105 °, with a fixed load of 0.237 kg, was applied for a loading time of 60 s. The data show that both CO2 and Ar reduce the hardness of PMMA to a comparable extent at low pressures. The hardness of PMMA subjected to Ar indicates a minimum at about 4 MPa and then increases. CO2 produced a monotone decreasing trend in hardness in the pressure range studied, and the glass‐transition temperature (Tg) was achieved at about 6.0 MPa. The change in hardness is attributed to plasticization of the polymer matrix that is more extensive for CO2. The relationship between the change in hardness for this PMMA subjected to high‐pressure CO2, the corresponding change in the Tg, and the associated swelling of the polymer is discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3020–3028, 2001  相似文献   

13.
Plastic microchips are very promising analytical devices for the high-speed analysis of biological compounds. However, due to its hydrophobicity, their surface strongly interacts with nonpolar analytes or species containing hydrophobic domains, resulting in a significant uncontrolled adsorption on the channel walls. This paper describes the migration of fluorescence-labeled amino acids and proteins using the poly(methyl methacrylate) microchip. A cationic starch derivative significantly decreases the adsorption of analytes on the channel walls. The migration time of the analytes was related to their molecular weight and net charge or pI of the analytes. FITC-BSA migrated within 2 min, and the theoretical plate number of the peak reached 480,000 plates/m. Furthermore, proteins with a wide range of pI values and molecular weights migrated within 1 min using the microchip.  相似文献   

14.
Poly(methylphenylsiloxane)–poly(methyl methacrylate) interpenetrating polymer networks (PMPS–PMMA IPNs) were prepared by in situ sequential condensation of poly(methylphenylsiloxane) with tetramethyl orthosilicate and polymerization of methyl methacrylate. PMPS–PMMA IPNs were characterized by infrared (IR), differential scanning calorimetry (DSC), and 29Si and 13C nuclear magnetic resonance (NMR). The mobility of PMPS segments in IPNs, investigated by proton spin–spin relaxation T2 measurements, is seriously restricted. The PMPS networks have influence on the average activation energy Ea,av of MMA segments in thermal degradation at initial conversion. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1717–1724, 1999  相似文献   

15.
Poly(methylphenylsiloxane)–poly(methyl methacrylate) graft copolymers (PSXE-g-PMMA) were prepared by condensation reaction of poly(methylphenylsiloxane)-containing epoxy resin (PSXE) with carboxyl-terminated poly(methyl methacrylate) (PMMA), and they were characterized by gel permeation chromatography (GPC), infrared (IR), and 29Si and 13C nuclear magnetic resonance (NMR). The microstructure of the PSXE-g-PMMA graft copolymer was investigated by proton spin–spin relaxation T2 measurements. The thermal stability and apparent activation energy for thermal degradation of these copolymers were studied by thermogravimetry and compared with unmodified PMMA. The incorporation of poly(methylphenylsiloxane) segments in graft copolymers improved thermal stability of PMMA and enhanced the activation energy for thermal degradation of PMMA. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2521–2530, 1998  相似文献   

16.
The dynamic mechanical and thermal properties of natural rubber/poly (methyl methacrylate) blends (NR/PMMA) with and without the addition of graft copolymer (NR‐g‐PMMA) have been investigated. Dynamic mechanical spectroscopy is used to examine the effect of compatibilizer loading on storage modulus (E′), loss modulus (E″) and loss tangent (tan δ) at different temperatures and at different frequencies. The morphology of the blends indicates that the size of the dispersed phase decreased by the addition of a few percent of the graft copolymer followed by a leveling off at higher concentrations. This is an indication of interfacial saturation. Attempts have been made to correlate morphology with dynamic mechanical properties. Various models have been used to fit the experimental viscoelastic results. Differential scanning calorimetry has been used to analyze the glass‐transition temperatures of the blends. The thermal stability of the blends has been analyzed by thermogravimetry. Compatibilized blends are found to be more thermally stable than uncompatibilized blends. Finally the miscibility and mechanical properties of the blends annealed above Tg are evaluated. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 525–536, 2000  相似文献   

17.
Via γ‐ray irradiation polymerization, poly(methyl methacrylate) (PMMA)/clay nanocomposites were successfully prepared with reactive modified clay and nonreactive clay. With reactive modified clay, exfoliated PMMA/clay nanocomposites were obtained, and with nonreactive clay, intercalated PMMA/clay nanocomposites were obtained. Both results were confirmed by X‐ray diffraction and high‐resolution transmission electron microscopy. PMMA extracted from PMMA/clay nanocomposites synthesized by γ‐ray irradiation had higher molecular weights and narrow molecular weight distributions. The enhanced thermal properties of the PMMA/clay nanocomposites were characterized by thermogravimetric analysis and differential scanning calorimetry. The improved mechanical properties of PMMA/clay were characterized by dynamic mechanical analysis. In particular, the enhancement of the thermal properties of the PMMA/clay nanocomposites with reactive modified clay was much more obvious than that of the PMMA/clay nanocomposites with nonreactive clay. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3218–3226, 2003  相似文献   

18.
We employed high‐resolution 13C cross‐polarization/magic‐angle‐spinning/dipolar‐decoupling NMR spectroscopy to investigate the miscibility and phase behavior of poly(vinyl chloride) (PVC)/poly(methyl methacrylate) (PMMA) blends. The spin–lattice relaxation times of protons in both the laboratory and rotating frames [T1(H) and T(H), respectively] were indirectly measured through 13C resonances. The T1(H) results indicate that the blends are homogeneous, at least on a scale of 200–300 Å, confirming the miscibility of the system from a differential scanning calorimetry study in terms of the replacement of the glass‐transition‐temperature feature. The single decay and composition‐dependent T(H) values for each blend further demonstrate that the spin diffusion among all protons in the blends averages out the whole relaxation process; therefore, the blends are homogeneous on a scale of 18–20 Å. The microcrystallinity of PVC disappears upon blending with PMMA, indicating intimate mixing of the two polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2390–2396, 2001  相似文献   

19.
The synthesis of nanosized poly(methyl methacrylate) initiated by 2,2′‐azoisobutyronitrile via differential microemulsion polymerization has been investigated. Poly(methyl methacrylate) with a molecular weight of around 1 × 106 and a particle size of about 20 nm was achieved under mild reaction conditions. A typical condition was that the surfactant amount required could be as low as 1/130 of the monomer amount in weight, and the surfactant/water ratio could be as low as 1/600, which is much less than the corresponding amounts reported in the literature. “Molecular bricks”, i.e., nanoparticles in which there are only one or two polymer chains, can be achieved using mild conditions by differential microemulsion polymerization, which may have potential applications for making molecular devices.

  相似文献   


20.
The fracture behavior of blends of poly(vinylidene fluoride) and poly(methyl methacrylate) was investigated all over the composition range. A detailed analysis of the net stress versus crack opening displacement curves was performed. Fracture surface observations allowed statements on the process zone characteristics ahead of the crack tip. For the amorphous blends, the crack initiation energy is well related to the glass transition temperature. For the semicrystalline blends, the fracture energy is correlated with the degree of crystallinity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号