首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The synthesis of tricyanomethyl copper complexes has been achieved by anodic dissolution of a sacrificial copper metal and cathodic reduction of 1, 1, 3, 3‐tetracyanopropane in acetonitrile, in the presence of triphenylphosphane used as coligand. The electrogenerated tetracyanopropyl radical anion is not stable and undergoes a cleavage leading to the tricyanomethyl anion and acrylonitrile which is electropolymerized at the cathode. The reaction solution gives a neutral dimeric binuclear copper(I) complex, bis{(μ‐ tricyanomethanido)bis(triphenylphosphane)copper(I)} [Cu(μ‐C(CN)3)(PPh3)2]2 ( 1 ). A second product of the synthesis reacts with 1, 10‐phenanthroline to give bis{cis‐(μ‐cyano)bis(triphenylphos‐phane)bis(phenanthroline)dicopper(I)}‐tricyanomethanide‐tetrafluoroborate‐diacetonitrile [cis‐{Cu2(μ‐CN)(Phen)2(PPh3)2}]2[C(CN)3] · BF4 · 2CH3CN ( 2 ). The crystal structures of 1 and 2 were determined by X‐ray analysis.  相似文献   

2.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

3.
The title compound, {[Cu(NH3)4][Cu(CN)3]2}n, features a CuI–CuII mixed‐valence CuCN framework based on {[Cu2(CN)3]}n anionic layers and [Cu(NH3)4]2+ cations. The asymmetric unit contains two different CuI ions and one CuII ion which lies on a centre of inversion. Each CuI ion is coordinated to three cyanide ligands with a distorted trigonal–planar geometry, while the CuII ion is ligated by four ammine ligands, with a distorted square‐planar coordination geometry. The interlinkage between CuI ions and cyanide bridges produces a honeycomb‐like {[Cu2(CN)3]}n anionic layer containing 18‐membered planar [Cu(CN)]6 metallocycles. A [Cu(NH3)4]2+ cation fills each metallocyclic cavity within pairs of exactly superimposed {[Cu2(CN)3]}n anionic layers, but there are no cations between the layers of adjacent pairs, which are offset. Pairs of N—H...N hydrogen‐bonding interactions link the N—H groups of the ammine ligands to the N atoms of cyanide ligands.  相似文献   

4.
Copper(I) halides with triphenyl phosphine and imidaozlidine‐2‐thiones (L ‐NMe, L ‐NEt, and L ‐NPh) in acetonitrile/methanol (or dichloromethane) yielded copper(I) mixed‐ligand complexes: mononuclear, namely, [CuCl(κ1‐S‐L ‐NMe)(PPh3)2] ( 1 ), [CuBr(κ1‐S‐L ‐NMe)(PPh3)2] ( 2 ), [CuBr(κ1‐S‐L ‐NEt)(PPh3)2] ( 5 ), [CuI(κ1‐S‐L ‐NEt)(PPh3)2] ( 6 ), [CuCl(κ1‐S‐L ‐NPh)(PPh3)2] ( 7 ), and [CuBr(κ1‐S‐L ‐NPh)(PPh3)2] ( 8 ), and dinuclear, [Cu21‐I)2(μ‐S‐L ‐NMe)2(PPh3)2] ( 3 ) and [Cu2(μ‐Cl)21‐S‐L ‐NEt)2(PPh3)2] ( 4 ). All complexes were characterized with analytical data, IR and NMR spectroscopy, and X‐ray crystallography. Complexes 2 – 4 , 7 , and 8 each formed crystals in the triclinic system with P$\bar{1}$ space group, whereas complexes 1 , 5 , and 6 crystallized in the monoclinic crystal system with space groups P21/c, C2/c, and P21/n, respectively. Complex 2 has shown two independent molecules, [(CuBr(κ1‐S‐L ‐NMe)(PPh3)2] and [CuBr(PPh3)2] in the unit cell. For X = Cl, the thio‐ligand bonded to metal as terminal in complex 4 , whereas for X = I it is sulfur‐bridged in complex 3 .  相似文献   

5.
Reactions of meso‐bis[(diphenylphosphinomethyl)phenylphosphino]methane (dpmppm) with CuI species in the presence of NaBH4 afforded di‐ and tetranuclear copper hydride complexes, [Cu2(μ‐H)(μ‐dpmppm)2]X ( 1 ) and [Cu4(μ‐H)24‐H)(μ‐dpmppm)2]X ( 2 ) (X=BF4, PF6). Complex 1 undergoes facile insertion of CO2 (1 atm) at room temperature, leading to a formate‐bridged dicopper complex [Cu2(μ‐HCOO)(dpmppm)2]X ( 3 ). The experimental and DFT theoretical studies clearly demonstrate that CO2 insertion into the Cu2(μ‐H) unit occurred with the flexible dicopper platform. Complex 2 also undergoes CO2 insertion to give a formate‐bridged complex, [Cu4(μ‐HCOO)3(dpmppm)2]X, during which the square Cu4 framework opened up to a linear tetranuclear chain.  相似文献   

6.
In the title compound, [Cu(CN)(C4H5N3)]n or [Cu(μ‐CN)(μ‐PyzNH2)]n (PyzNH2 is 2‐aminopyrazine), the CuI center is tetrahedrally coordinated by two cyanide and two PyzNH2 ligands. The CuI–cyano links give rise to [Cu–CN] chains running along the c axis, which are bridged by bidentate PyzNH2 ligands. The three‐dimensional framework can be described as being formed by two interpenetrated three‐dimensional honeycomb‐like networks, both made of 26‐membered rings of composition [Cu6(μ‐CN)2(μ‐PyzNH2)4].  相似文献   

7.
The title compound, catena‐poly[[bis[(triazacyclononane‐κ3N,N′,N′′)copper(II)]‐di‐μ‐cyanido‐κ4N:C‐palladate(II)‐di‐μ‐cyanido‐κ4C:N] dibromide bis[[(triazacyclononane‐κ3N,N′,N′′)copper(II)]‐μ‐cyanido‐κ2N:C‐[dicyanidopalladate(II)]‐μ‐cyanido‐κ2C:N] monohydrate], {[Cu2Pd(CN)4(C6H15N3)2]Br2·[Cu2Pd2(CN)8(C6H15N3)2]·H2O}n, (I), was isolated from an aqueous solution containing tacn·3HBr (tacn is 1,4,7‐triazacyclononane), Cu2+ and tetracyanidopalladate(2−) anions. The crystal structure of (I) is essentially ionic and built up of 2,2‐electroneutral chains, viz. [Cu(tacn)(NC)–Pd(CN)2–(CN)–], positively charged 2,4‐ribbons exhibiting the composition {[Cu(tacn)(NC)2–Pd(CN)2–Cu(tacn)]2n+}n, bromide anions and one disordered water molecule of crystallization. The O atom of the water molecule occupies two unique crystallographic positions, one on a centre of symmetry, which is half occupied, and the other in a general position with one‐quarter occupancy. One of the tacn ligands also exhibits disorder. The formation of two different types of one‐dimensional structural motif within the same structure is a unique feature of this compound.  相似文献   

8.
The synthesis, structural characterization, and reactivity of new bridged borylene complexes are reported. The reaction of [{Cp*CoCl}2] with LiBH4 ? THF at ?70 °C, followed by treatment with [M(CO)3(MeCN)3] (M=W, Mo, and Cr) under mild conditions, yielded heteronuclear triply bridged borylene complexes, [(μ3‐BH)(Cp*Co)2(μ‐CO)M(CO)5] ( 1 – 3 ; 1 : M=W, 2 : M=Mo, 3 : M=Cr). During the syntheses of complexes 1 – 3 , capped‐octahedral cluster [(Cp*Co)2(μ‐H)(BH)4{Co(CO)2}] ( 4 ) was also isolated in good yield. Complexes 1 – 3 are isoelectronic and isostructural to [(μ3‐BH)(Cp*RuCO)2(μ‐CO){Fe(CO)3}] ( 5 ) and [(μ3‐BH)(Cp*RuCO)2(μ‐H)(μ‐CO){Mn(CO)3}] ( 6 ), with a trigonal‐pyramidal geometry in which the μ3‐BH ligand occupies the apical vertex. To test the reactivity of these borylene complexes towards bis‐phosphine ligands, the room‐temperature photolysis of complexes 1 – 3 , 5 , 6 , and [{(μ3‐BH)(Cp*Ru)Fe(CO)3}2(μ‐CO)] ( 7 ) was carried out. Most of these complexes led to decomposition, although photolysis of complex 7 with [Ph2P(CH2)nPPh2] (n=1–3) yielded complexes 9 – 11 , [3,4‐(Ph2P(CH2)nPPh2)‐closo‐1,2,3,4‐Ru2Fe2(BH)2] ( 9 : n=1, 10 : n=2, 11 : n=3). Quantum‐chemical calculations by using DFT methods were carried out on compounds 1 – 3 and 9 – 11 and showed reasonable agreement with the experimentally obtained structural parameters, that is, large HOMO–LUMO gaps, in accordance with the high stabilities of these complexes, and NMR chemical shifts that accurately reflected the experimentally observed resonances. All of the new compounds were characterized in solution by using mass spectrometry, IR spectroscopy, and 1H, 13C, and 11B NMR spectroscopy and their structural types were unequivocally established by crystallographic analysis of complexes 1 , 2 , 4 , 9 , and 10 .  相似文献   

9.
Reactions of copper(I) halides (Cl, Br, I) with 1‐methyl‐1, 3‐imidazoline‐2‐thione (mimzSH) in 1 : 2 molar ratio yielded sulfur‐bridged dinuclear [Cu2X2(μ‐S‐mimzSH)21‐S‐mimzSH)2] (X = I, 1 , Br, 2 ; Cl, 3 ) complexes. Copper(I) iodide with 1,3‐imidazoline‐2‐thione (imzSH2) and Ph3P in 1 : 1 : 1 molar ratio has also formed a sulfur‐bridged dinuclear [Cu2I2(μ‐S‐imzSH2)2(PPh3)2] ( 4 ) complex. The central Cu(μ‐S)2Cu cores form parallelograms with unequal Cu–S bond distances {2.324(2), 2.454(3) Å} ( 1 ); {2.3118(6), 2.5098(6) Å} ( 2 ); {2.3075(4), 2.5218(4) Å} ( 3 ); {2.3711(8), 2.4473(8) Å} ( 4 ). The Cu···Cu separations, 2.759–2.877Å in complexes 1 – 3 are much shorter than 3.3446Å in complex 4 . The weak intermolecular interactions {H2CH···S# ( 2 ); CH···Cl# ( 3 ); NH···I# ( 4 )} between dimeric units in complexes 2 – 4 lead to the formation of linear 1D polymers.  相似文献   

10.
5‐Ethynyl‐2,2′‐bipyridine ( 1 ; bpyC≡CH) polymerized in the presence of catalytic amounts of [RhF(COD)(PPh3)] or [Rh(μ‐OH)(COD)]2 (COD = 1,5‐cyclooctadiene) in 74–91% yields. In contrast, [Rh(μ‐X)(NBD)]2 (X = Cl or OMe; NBD = norbornadiene) did not catalyze the polymerization of 1 or gave low yields of the polymer. The obtained polymer, poly(5‐ethynyl‐2,2′‐bipyridine) [ 2 ; (bpyC?CH)n], was highly stereoregular with a predominant cis–transoidal geometry. Random copolyacetylenes containing the 2,2′‐bipyridyl group with improved solubility in organic solvents were obtained by the treatment of a mixture of 1 and phenylacetylene ( 3 ) or 1‐ethynyl‐4‐n‐pentyl‐benzene with catalytic amounts of [RhF(COD)(PPh3)]. A block copolymer of 1 and 3 was prepared by the addition of 1 to a poly(phenylacetylene) containing a living end. The reaction of 2 with [Mo(CO)6] produced an insoluble polymer containing [Mo(CO)4(bpy)] groups, whereas with [RuCl2(bpy)2] or [Ru(bpy)2(CH3COCH3)2](CF3SO3)2, it gave soluble metal–polymer complexes containing [Ru(bpy)3]2+ groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:3167–3177, 2005  相似文献   

11.
The reaction of [Cu(CH3CN)4]BF4, pyridine-2-carbaldehyde azine, triphenylphosphine, and diimine ligands derived from 4,4′-bipyridine and/or trans-1,2-bis(4-pyridyl)ethylene gave two copper(I) coordination polymers, [Cu2(µ-paa)(µ-bp)(PPh3)2] n (BF4)2 n (1) and [Cu2(µ-paa)(µ-tbpe)(PPh3)2] n (BF4)2 n (2). Despite 1 and 2 differing only by a double bond, they have significantly different photophysical and structural properties. Crystallographic studies show that 2 is a porous solid while 1 is not porous. The two polymers are photoluminescent as solids at room temperature, but the emission peaks of 2 are obviously red-shift. Moreover, different from 1, 2 has a good emission centered at 510 nm in CH3CN solution. The double bond in the diimine ligand plays an important role in these two copper(I) coordination polymers.  相似文献   

12.
Hybrid copper molybdates containing the long‐spanning bis(4‐pyridylmethyl) piperazine (bpmp) ligand were prepared via hydrothermal synthesis and structurally characterized by single‐crystal X‐ray diffraction. The reduced copper phase and major product [Cu4(MoO4)2(bpmp)4]n ( 1 ) shows 1D ribbon motifs with embedded {CuI2O2} dimeric units, built from the bpmp pillaring of [Cu4(MoO4)2] linear clusters. The oxidized copper phase and minor product {[Cu2(MoO4)2(bpmp)4] · 24H2O}n ( 2 ) displays [Cu(bpmp)2]n2n+ mutually inclined interpenetrated cationic layers cross‐pillared by molybdate tetrahedra into an unprecedented 6‐connected self‐penetrated network with 485265 topology.  相似文献   

13.
The synthesis and structures of five new compounds are reported. [Mg(6‐Oq)2(phen)2] ( 1 ), [Na(phen)3][(6‐HOq)(6‐Oq)] ( 2 ), 1/∞[Cu(3‐Opy)(3‐HOpy)2(PPh3)] ( 3 ), 1/∞[Cu2{μ‐(6‐Oq)}(PPh3)2] ( 4 ) and [Cu2(pht)2(μ‐dppm)2] ( 5 ) (6‐HOq = 6‐hydroxyquinoline; phen = 1,10‐phenanthroline, 3‐HOpy = 3‐hydroxypyridine; Hpht = phthalimide; dppm = bis‐(diphenylphosphino)methane) were prepared by deprotonation of N‐heterocyclic aromatic compounds with metal alkoxides. 1 – 5 represent useful starting materials for investigating the supramolecular cordination chemistry of organic anhydrides.  相似文献   

14.
By using cyclohexane‐1,2‐diamine (chxn), Ni(ClO4)2 ? 6H2O and Na3[Mo(CN)8] ? 4H2O, a 3D diamond‐like polymer {[NiII(chxn)2]2[MoIV(CN)8] ? 8H2O}n ( 1 ) was synthesised, whereas the reaction of chxn and Cu(ClO4)2 ? 6H2O with Na3[MV(CN)8] ? 4H2O (M=Mo, W) afforded two isomorphous graphite‐like complexes {[CuII(chxn)2]3[MoV(CN)8]2 ? 2H2O}n ( 2 ) and {[CuII(chxn)2]3[WV(CN)8]2 ? 2H2O}n ( 3 ). When the same synthetic procedure was employed, but replacing Na3[Mo(CN)8] ? 4H2O by (Bu3NH)3[Mo(CN)8] ? 4H2O (Bu3N=tributylamine), {[CuII(chxn)2MoIV(CN)8][CuII(chxn)2] ? 2H2O}n ( 4 ) was obtained. Single‐crystal X‐ray diffraction analyses showed that the framework of 4 is similar to 2 and 3 , except that a discrete [Cu(chxn)2]2+ moiety in 4 possesses large channels of parallel adjacent layers. The experimental results showed that in this system, the diamond‐ or graphite‐like framework was strongly influenced by the inducement of metal ions. The magnetic properties illustrate that the diamagnetic [MoIV(CN)8] bridges mediate very weak antiferromagnetic coupling between the NiII ions in 1 , but lead to the paramagnetic behaviour in 4 because [MoIV(CN)8] weakly coordinates to the CuII ions. The magnetic investigations of 2 and 3 indicate the presence of ferromagnetic coupling between the CuII and WV/MoV ions, and the more diffuse 5d orbitals lead to a stronger magnetic coupling interaction between the WV and CuII ions than between the MoV and CuII ions.  相似文献   

15.
Rare‐earth‐metal borohydrides are known to be efficient catalysts for the polymerization of apolar and polar monomers. The bis‐borohydrides [{CH(PPh2NSiMe3)2}La(BH4)2(THF)] and [{CH(PPh2NSiMe3)2}Ln(BH4)2] (Ln=Y, Lu) have been synthesized by two different synthetic routes. The lanthanum and the lutetium complexes were prepared from [Ln(BH4)3(THF)3] and K{CH(PPh2NSiMe3)2}, whereas the yttrium analogue was obtained from in situ prepared [{CH(PPh2NSiMe3)2}YCl2]2 and NaBH4. All new compounds were characterized by standard analytical/spectroscopic techniques, and the solid‐state structures were established by single‐crystal X‐ray diffraction. The ring‐opening polymerization (ROP) of ε‐caprolactone initiated by [{CH(PPh2NSiMe3)2}La(BH4)2(THF)] and [{CH(PPh2NSiMe3)2}Ln(BH4)2] (Ln=Y, Lu) was studied. At 0 °C the molar mass distributions determined were the narrowest values (M?w/M?n=1.06–1.11) ever obtained for the ROP of ε‐caprolactone initiated by rare‐earth‐metal borohydride species. DFT investigations of the reaction mechanism indicate that this type of complex reacts in an unprecedented manner with the first B? H activation being achieved within two steps. This particularity has been attributed to the metallic fragment based on the natural bond order analysis.  相似文献   

16.
By using a linear tetraphosphine, meso‐bis[(diphenylphosphinomethyl)phenylphosphino]methane (dpmppm), nona‐ and hexadecanuclear copper hydride clusters, [Cu9H7(μ‐dpmppm)3]X2 (X=Cl ( 1 a ), Br ( 1 b ), I ( 1 c ), PF6 ( 1 d )) and [Cu16H14(μ‐dpmppm)4]X2 (X2=I2 ( 2 c ), (4/3) PF6?(2/3) OH ( 2 d )) were synthesized and characterized. They form copper‐hydride cages of apex‐truncated supertetrahedral {Cu9H7}2+ and square‐face‐capped cuboctahedral {Cu16H14}2+ structures. The hydride positions were estimated by DFT calculations to be facially dispersed around the copper frameworks. A kinetically controlled synthesis gave an unsymmetrical Cu8H6 cluster, [Cu8H6(μ‐dpmppm)3]2+ ( 3 ), which readily reacted with CO2 to afford linear Cu4 complexes with formate bridges, leading to an unprecedented hydrogenation of CO2 into formate catalyzed by {Cu4(μ‐dpmppm)2} platform. The results demonstrate that new motifs of copper hydride clusters could be established by the tetraphosphine ligands, and the structures influence their reactivity.  相似文献   

17.
Four cyanide-bridged heterometallic complexes {[CuPb(L 1 )][Fe III (bpb)(CN) 2 ]} 2 ·(ClO 4 ) 2 ·2H 2 O·2CH 3 CN (1), {[CuPb(L 1 )] 2 [Fe II (CN) 6 ](H 2 O) 2 }·10H 2 O (2), {[Cu 2 (L 2 )][Fe III (bpb)(CN) 2 ] 2 }·2H 2 O·2CH 3 OH (3) and {[Cu 2 (L 2 )] 3 [Fe III (CN) 6 ] 2 (H 2 O) 2 }·10H 2 O (4) have been synthesized by treating K[Fe III (bpb)(CN) 2 ] [bpb 2-=1,2-bis(pyridine-2-carboxamido)benzenate] and K 3 [Fe III (CN)] 6 with dinuclear compartmental macrocyclic Schiff-base complexes [CuPb(L 1 )] (ClO 4 ) 2 or [Cu 2 (L 2 )]·(ClO 4 ) 2 , in which H 2 L 1 was derived from 2,6-diformyl-4-methyl-phenol, ethylenediamine, and diethylenetriamine in the molar ratio of 2:1:1 and H 2 L 2 from 2,6-diformyl-4-methyl-phenol and propylenediamine in the molar ratio of 1:1. Single crystal X-ray diffraction analysis reveals that compound 1 displays a cyclic hexanuclear heterotrimetallic molecular structure with alternating [FeⅢ (bpb)(CN) 2 ]- and [CuPb(L 1 )] 2+ units. Complex 2 is of a neutral dumb-bell-type pentanuclear molecular configuration consisting of one [Fe(CN)6] 4- anion sandwiched in two [CuPu(L 1 )] 2+ cations, and the pentanuclear moieties are further connected by the hydrogen bonding to give a 2D supramolecular framework. Heterobimetallic complex 3 is a tetranuclear molecule composed of a centrosymmetric [Cu 2 (L2)] 2+ segment and two terminal cyanide-containing blocks [FeⅢ (bpb)(CN)2 ]- . Octanuclear compound 4 is built from two [Fe(CN)6]3- anions sandwiched in the three [Cu 2 L 2 ] 2+ cations. Investigation of their magnetic properties reveals the overall antiferromagnetic behavior in the series of complexes except 2.  相似文献   

18.
Three new heterobimetallic coordination polymers (CPs), {[Ni(4-pytpy)2][Ag(CH3CN)(NO3)](NO3)2(H2O)2}n 1 (4-pytpy = 4′-(4-pyridyl)- 2,2′:6′,2′′-terpyridine), {[Ni(4-pytpy)2][Ag2(4,4′-bipy)](NO3)4(DMSO)4}n 2 (4,4′-bipy = 4,4′-bipyridine), and {[Ni(4-pytpy)2][Cu3(SCN)5](CH3CN)(DMF)(H2O)0.5}n 3, were synthesized from metalloligand [Ni(4-pytpy)2]2+ with transition metals and different bridging ligands. All three compounds were characterized by elemental analysis, Fourier-transform infrared spectroscopy, thermal analysis and single-crystal X-ray diffraction analysis. Both CPs 1 and 2 display one-dimensional (1D) chain structures, which are further extended to 3D supramolecular structures through hydrogen bonds. CP-3 features a 2D network, which is constructed from 1D double chain cluster structure {[Cu3(SCN)5]2?}n linked by metalloligands [Ni(4-pytpy)2]2+ and exhibits an unusual (3,3,4)-connected 3-nodal topology. Thermal analysis indicates that the dehydrated structures of 1 and 3 can be stable up to 310 °C. The solid-state luminescence properties of compounds 13 were also investigated.  相似文献   

19.
On the Reactivity of Alkylthio Bridged 44 CVE Triangular Platinum Clusters: Reactions with Bidentate Phosphine Ligands The 44 cve (cluster valence electrons) triangular platinum clusters [{Pt(PR3)}3(μ‐SMe)3]Cl (PR3 = PPh3, 2a ; P(4‐FC6H4)3, 2b ; P(n‐Bu)3, 2c ) were found to react with PPh2CH2PPh2 (dppm) in a degradation reaction yielding dinuclear platinum(I) complexes [{Pt(PR3)}2(μ‐SMe)(μ‐dppm)]Cl (PR3 = PPh3, 3a ; P(4‐FC6H4)3, 3b ; P(n‐Bu)3; 3e ) and the platinum(II) complex [Pt(SMe)2(dppm)] ( 4 ), whereas the addition of PPh2CH2CH2PPh2 (dppe) to cluster 2a afforded a mixture of degradation products, among others the complexes [Pt(dppe)2] and [Pt(dppe)2]Cl2. On the other hand, the treatment of cluster 2a with PPh2CH2CH2CH2PPh2 (dppp) ended up in the formation of the cationic complex [{Pt(dppp)}2(μ‐SMe)2]Cl2 ( 5 ). Furthermore, the terminal PPh3 ligands in complex 3a proved to be subject to substitution by the stronger donating monodentate phosphine ligands PMePh2 and PMe2Ph yielding the analogous complexes [{Pt(PR3)}2(μ‐SMe)(μ‐dppm)]Cl (PR3 = PMePh2, 3c ; PMe2Ph, 3d ). NMR investigations on complexes 3 showed an inverse correlation of Tolmans electronic parameter ν with the coupling constants 1J(Pt,P) and 1J(Pt,Pt). All compounds were fully characterized by means of NMR and IR spectroscopy. X‐ray diffraction analyses were performed for the complexes [{Pt{P(4‐FC6H4)3}}2(μ‐SMe)(μ‐dppm)]Cl ( 3b ), [Pt(SMe)2(dppm)] ( 4 ), and [{Pt(dppp)}2(μ‐SMe)2]Cl2 ( 5 ).  相似文献   

20.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐Ray Crystal Structures of [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], [Ru2(CO)4(μ‐X)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (X = Cl, S2CH) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts in benzene with elemental sulfur to the addition product [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2). 2 is also obtained by reaction of 1 with ethylene sulfide. The reaction of 1 with carbon disulfide yields with insertion of the CS2 into the Ru2(μ‐H) bridge the dithioformato complex [Ru2(CO)4(μ‐S2CH)(μ‐PtBu2)(μ‐dppm)] ( 3 ). Furthermore, 1 reacts with [NO][BF4] to the complex salt [Ru2(CO)4(μ‐NO)(μ‐H)(μ‐PtBu2)(μ‐dppm)][BF4] ( 4 ), and reaction of 1 with CCl4 or CHCl3 affords spontaneously [Ru2(CO)4(μ‐Cl)(μ‐PtBu2)(μ‐dppm)] ( 5 ) in nearly quantitative yield. The molecular structures of 2 , 3 and 5 were confirmed by crystal structure analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号