首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (L = CO, PnBu3) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts with several phosphines (L) in refluxing toluene under substitution of one carbonyl ligand and yields the compounds [Ru2(CO)3L(μ‐H)(μ‐PtBu2)(μ‐dppm)] (L = PnBu3, 2 a ; L = PCy2H, 2 b ; L = dppm‐P, 2 c ; dppm = Ph2PCH2PPh2). The reactivity of 1 as well as the activated complexes 2 a – c towards phenylethyne was studied. Thus 1 , 2 a and 2 b , respectively, react with PhC≡CH in refluxing toluene with elimination of dihydrogen to the acetylide‐bridged complexes [Ru2(CO)4(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 3 ) and [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 4 a and 4 b ). The molecular structures of 3 and 4 a were determined by crystal structure analyses.  相似文献   

2.
The complexes [Ag(η2‐N∧S)2](PF6), N∧S = 1‐methyl‐2‐(methylthiomethyl)‐1H‐benzimidazole, mmb (complex 1 ) or 1‐methyl‐2‐(tert‐butylthiomethyl)‐1H‐benzimidazole, mtb (complex 2 ), and [Ag(μ,η2‐mmb)(μ,η2‐O2PF2)] (complex 3 ) were synthesized and characterized by X‐ray crystallography. Long Ag–S (ca. 2.70 Å) and shorter Ag–N bonds (ca. 2.23 Å) are part of characteristically distorted tetrahedral coordination arrangements at the silver(I) ions in 1 and 2 . Unexpectedly, the comparison with the copper analogue [Cu(η2‐mmb)2](PF6) reveals a more tetrahedral and less linear coordination arrangement for the corresponding silver species. Compound 3 as obtained by hydrolysis of the PF6 ion or by the use of AgPO2F2 exhibits bridging mmb and η2‐difluorophosphate ligands in a chain‐type structure.  相似文献   

3.
The title compound [La(phen)2(H2O)2(NO3)2](NO3) · 2(phen)(H2O) with phen = 1,10‐phenanthroline was prepared by the stoichiometric reaction of La(NO3)3 · 6 H2O and 1,10‐phenanthroline monohydrate in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 11.052(2), b = 13.420(2), c = 16.300(2) Å, α = 78.12(1)°, β = 88.77(1)°, γ = 83.03(1)°, Z = 2, R = 0.0488, wR2 = 0.1028) consists of [La(phen)2(H2O)2(NO3)2]2+ complex cations, NO3 anions, phen and H2O molecules. The La atom is 10‐fold coordinated by four N atoms of two bidentate chelating phen ligands and six O atoms of two H2O molecules and two bidentate chelating NO32– ligands with d(La–O) = 2.522–2.640 Å and d(La–N) = 2.689–2.738 Å. The intermolecular π‐π stacking interactions play an essential role in the formation of two different 2 D layers parallel to (001), which are formed by complex cations and uncoordinating phen molecules, respectively. The uncoordinated NO3 anions and H2O molecules are sandwiched between the cationic and phen layers.  相似文献   

4.
Investigations of the Synthesis of [CpxSb{M(CO)5}2] (Cpx = Cp, Cp*; M = Cr, W) The reaction of CpSbCl2 with [Na2{Cr2(CO)10}] leads to the chlorostibinidene complex [ClSb{Cr(CO)5}2(thf)] ( 1 ), whereas the reaction of CpSbCl2 with [Na2{W2(CO)10}] results in the formation of the complexes [ClSb{W(CO)5}3] ( 2 ), [Na(thf)][Cl2Sb{W(CO)5}2] ( 3 ), [ClSb{W(CO)5}2(thf)] ( 4 ) and [Sb2{W(CO)5}3] ( 5 ). The stibinidene complex [CpSb{Cr(CO)5}2] ( 6 ) is obtained by the reaction of [ClSb{Cr(CO)5}2] with NaCp, while its Cp* analogue [Cp*Sb{Cr(CO)5}2] ( 7 ) is formed via the metathesis of Cp*SbCl2 with [Na2{Cr2(CO)10}]. The products 2 , 3 , 4 and 7 are additionally characterised by X‐ray structure analyses.  相似文献   

5.
Photolysis of the halfsandwich tetracarbonylmetal complexes CpV(CO)4, Cp*V(CO)4 and Cp*Ta(CO)4 in solution in the presence of di(organyl)dichalcogenides E2R2 (E = S, Se, Te; R = Me, Ph, Fc) leads to diamagnetic doubly organochalcogenolato‐bridged compounds, [Cp()M(CO)2(μ‐ER)]2. According to the X‐ray structure determinations carried out for [CpV(CO)2(μ‐TeMe)]2, [Cp*V(CO)2(μ‐TePh)]2 and [Cp*Ta(CO)2(μ‐SPh)]2, the molecular framework consists of a folded M2(μ‐ER)2 ring with the cyclopentadienyl ligands in cis‐configuration and the organyl substituents R in a syn‐equatorial arrangement, thus forming a bowl‐shaped molecule with the four terminal CO ligands protruding into the inner sphere. The M…M distances (in the range between 305 and 330 pm) are not considered to indicate direct bonding interactions. The vanadium complexes [Cp()V(CO)2(μ‐ER)]2 are completely decarbonylated in the presence of an excess of E2R2 in boiling toluene, and in many cases the paramagnetic quadruply‐bridged products, [CpV(μ‐ER)2]2, can be isolated.  相似文献   

6.
Dark blue plate‐like crystals of [Cu2(phen)2 · (H2O)2(OH)2](HCO3)2 · 6 H2O were obtained from a CH3OH–H2O solution containing CuCl2, 1,10‐phenanthroline (phen), sebacic acid and Na2CO3. The crystal structure (triclinic, P 1 (no. 2), a = 8.118(1), b = 9.624(1), c = 10.536(1) Å, α = 81.35(1)°, β = 88.51(1)°, γ = 75.77(1)°, Z = 1, R = 0.0332, wR2 = 0.0981 for 4163 observed reflections (F ≥ 2σ(F ) out of 4595 unique reflections) consists of divalent [Cu2(phen)2(H2O)2(OH)2]2+ complex cations, anionic (HCO3)22– dimers and H2O molecules. The divalent complex cations (d(Cu…Cu) = 2.905(1) Å) are centered at inversion centers. The Cu atoms are fivefold square‐pyramidally coordinated by two nitrogen and three oxygen atoms from one bidentate chelating phen ligand, two bridging hydroxide groups and one axial water molecule (d(Cu–N)phen = 2.021(2), 2.024(2) Å; d(Cu–O)OH = 1.941(1), 1.949(1) Å; d(Cu–O)H2O = 2.254(2) Å). The divalent complex cations are stacked to form 2 D layers parallel (001) with 1 D π‐π stacking interactions along [100] via the terminal phen rings. The dimeric (HCO3)22– anions and the hydrogen bonded H2O molecules are sandwiched between the 2 D layers.  相似文献   

7.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)n(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (n = 4; 5) and [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] The reaction of [Ru2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 2 ) with dppm yields the dinuclear species [Ru2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ) (dppm = Ph2PCH2PPh2). Under thermal or photolytic conditions 3 loses very easily one carbonyl ligand and affords the corresponding electronically and coordinatively unsaturated complex [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). 4 is also obtainable by an one‐pot synthesis from [Ru3(CO)12], an excess of tBu2PH and stoichiometric amounts of dppm via the formation of [Ru2(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)2] ( 1 ). 4 exhibits a Ru–Ru double bond which could be confirmed by addition of methylene to the dimetallacyclopropane [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ). The molecular structures of 3 , 4 and 5 were determined by X‐ray crystal structure analyses.  相似文献   

8.
Perfluoromethyl Element Ligands. XLII Binuclear Complexes of the Type Mn2(CO)8E(CF3)2E′R (E = P, As; E′ = S, Se, Te): Synthesis and Structure Complexes of the type Mn2(CO)8E(CF3)2E′R, in which the groups E(CF3)2 and E′R act as bridging ligands, are prepared either by direct reactions of Mn2(CO)10 with (F3C)2EE′R (E = P, As; E′ = S, Se, Te) or by substitution of the iodine bridge in the representatives Mn2(CO)8 E(CF3)2I (E = P, As) with mercury compounds Hg(E′R)2. As a rule the binuclear systems contain four‐membered heterocycles (Mn2EE′). However, the reactions of Mn2(CO)10 with (F3C)2PE′P(CF3)2 (E′ = S, Se) yield five‐membered rings [Mn2P(E′P)]. The compounds have been characterized by spectroscopic (NMR, IR, MS), analytic (C, H) and X‐ray diffraction investigations. The pyramidal Mn2E′R fragment shows dynamic behaviour in solution via inversion between two identical structures.  相似文献   

9.
The phosphane ligand [Ph2(Carb)P]+ forms neutral complexes {Ph2(Carb)P}MCl3 (Carb = 2,3-dihydro-1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene; M = Pd, Pt) through the reaction of it's chloride salt with (PhCN)2MCl2; the triarylphosphane type properties of the ligand are revealed by n.m.r. and structural data.  相似文献   

10.
Tungsten and molybdenum complexes [M(CO)2(dpphen)(dbf)2] (M = W 1 or Mo 2 ; dpphen = 4,7‐diphenyl‐1,10‐phenanthroline; dbf = dibutylfumarate) have been synthesized and structurally characterized by X‐ray diffraction analysis. In both complexes which have similar structure, the metal atom co‐ordination is distorted octahedral with dpphen and two CO groups in the equatorial plane and the metal atom binds in an η2‐fashion to the C–C bonds of two dbf ligands. The two C–C bonds are almost mutually orthogonal. The two complexes are different in conformation which result from face selection of the two dbf ligands for coordination to the metal atom.  相似文献   

11.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐Ray Crystal Structures of [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], [Ru2(CO)4(μ‐X)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (X = Cl, S2CH) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts in benzene with elemental sulfur to the addition product [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2). 2 is also obtained by reaction of 1 with ethylene sulfide. The reaction of 1 with carbon disulfide yields with insertion of the CS2 into the Ru2(μ‐H) bridge the dithioformato complex [Ru2(CO)4(μ‐S2CH)(μ‐PtBu2)(μ‐dppm)] ( 3 ). Furthermore, 1 reacts with [NO][BF4] to the complex salt [Ru2(CO)4(μ‐NO)(μ‐H)(μ‐PtBu2)(μ‐dppm)][BF4] ( 4 ), and reaction of 1 with CCl4 or CHCl3 affords spontaneously [Ru2(CO)4(μ‐Cl)(μ‐PtBu2)(μ‐dppm)] ( 5 ) in nearly quantitative yield. The molecular structures of 2 , 3 and 5 were confirmed by crystal structure analyses.  相似文献   

12.
Synthesis, Crystal Structures, and Vibrational Spectra of trans ‐[Pt(N3)4(ECN)2]2–, E = S, Se By oxidative addition to (n‐Bu4N)2[Pt(N3)4] with dirhodane in dichloromethane trans‐(n‐Bu4N)2[Pt(N3)4(SCN)2] and by ligand exchange of trans(n‐Bu4N)2[Pt(N3)4I2] with Pb(SeCN)2 trans‐(n‐Bu4N)2[Pt(N3)4(SeCN)2] are formed. X‐ray structure determinations on single crystals of trans‐(Ph4P)2[Pt(N3)4(SCN)2] (triclinic, space group P 1, a = 10.309(3), b = 11.228(2), c = 11.967(2) Å, α = 87.267(13), β = 75.809(16), γ = 65.312(17)°, Z = 1) and trans‐(Ph4P)2[Pt(N3)4(SeCN)2] (triclinic, space group P 1, a = 9.1620(10), b = 10.8520(10), c = 12.455(2) Å, α = 90.817(10), β = 102.172(10), γ = 92.994(9)°, Z = 1) reveal, that the compounds crystallize isotypically with octahedral centrosymmetric complex anions. The bond lengths are Pt–S = 2.337, Pt–Se = 2.490 and Pt–N = 2.083 (S), 2.053 Å (Se). The approximate linear Azidoligands with Nα–Nβ–Nγ‐angles = 172,1–175,0° are bonded with Pt–Nα–Nβ‐angles = 116,7–120,5°. In the vibrational spectra the platinum chalcogen stretching vibrations of trans‐(n‐Bu4N)2[Pt(N3)4(ECN)2] are observed at 296 (E = S) and in the range of 186–203 cm–1 (Se). The platinum azide stretching modes of the complex salts are in the range of 402–425 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS) = 1.64, fd(PtSe) = 1.36, fd(PtNα) = 2.33 (S), 2.40 (Se) and fd(NαNβ, NβNγ) = 12.43 (S), 12.40 mdyn/Å (Se).  相似文献   

13.
Stepwise and Chemically Reversible Reduction of {(μ‐bmtz)[MCl(η6‐Cym)]2}[PF6]2 (M = Ru, Os; bmtz = 3,6‐Bis(2′‐pyrimidyl)1,2,4,5‐tetrazine) with up to Six Electrons The title compounds were synthesized and characterized spectroscopically. Analysis of cyclic voltammetry in conjunction with spectroelectrochemistry (UV/VIS/NIR, ESR) allowed us to identify the products of sequential, chemically reversible reduction with up to six electrons. It is the first time that the molecular coupling of electron transfer steps (E) and bond breaking/bond forming chemical processes (C) has been studied for a diruthenium system. In that case, the chemically reversible sequence E, EC, EEC, E and E was observed whereas the diosmium analogue showed the unusual sequence E, EC, E, EEC and E.  相似文献   

14.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

15.
Crystal Structure of the Diacetone Alcohol Complex [Mn(DAA)3]2+[MnI4]2– · DAA The title compound has been prepared from MnI2 and excess diacetone alcohol (4‐hydroxy‐4‐methyl‐2‐pentanon) to give brown single crystals which were suitable for a crystal structure determination. Space group P21/c, Z = 4, lattice dimensions at 157 K: a = 1158.3(1), b = 1806.0(1), c = 1846.5(2) pm, β = 97.421(8)°, R1 = 0.0381. The structure consists of [Mn(DAA)3]2+ ions with distorted octahedral environment of the manganese atom, tetrahedral [MnI4]2– ions and a diacetone alcohol molecule which is connected by two hydrogen bridges with the complex cation.  相似文献   

16.
Crystal Structure of the Molybdenum(V) Complex [MoCl3(NtBu)(H2NtBu)]2 · 1/2 C7H8 Green moisture sensitive single crystals of [MoCl3(NtBu)(H2NtBu)]2 ( 1 · 1/2 C7H8) have been prepared from molybdenum pentachloride with Me2Si(HNtBu)2 in toluene solution; they were suitable for a crystal structure determination. 1 · 1/2 C7H8: Space group P 1, Z = 2, lattice dimensions at –83 °C: a = 696.9(1), b = 1470.9(2), c = 1579.0(2) pm, α = 96.673(13)°, β = 92.014(14)°, γ = 94.852(14)°, R = 0.0321. 1 forms centrosymmetric molecules in which the molybdenum atoms are linked by two μ‐Cl‐bridges with MoCl bond lengths of 245.7 and 270.2 pm in average of the two crystallographically independent individuals. The longer MoCl bond is in trans‐position to the nitrogen atom of the imido ligand (MoN distance 169.0 pm, MoNC bond angle 167.0° in average).  相似文献   

17.
Synthesis, Crystal Structures, and Vibrational Spectra of trans ‐[Pt(N3)4X2]2–, X = Cl, Br, I By oxidative addition to (n‐Bu4N)2[Pt(N3)4] with the elemental halogens in dichloromethane trans‐(n‐Bu4N)2[Pt(N3)4X2], X = Cl, Br, I are formed. X‐ray structure determinations on single crystals of trans‐(Ph4P)2[Pt(N3)4Cl2] (triclinic, space group P1, a = 10.352(1), b = 10.438(2), c = 11.890(2) Å, α = 91.808(12), β = 100.676(12), γ = 113.980(10)°, Z = 1), trans‐(Ph4P)2[Pt(N3)4Br2] (triclinic, space group P1, a = 10.336(1), b = 10.536(1), c = 12.119(2) Å, α = 91.762(12), β = 101.135(12), γ = 112.867(10)°, Z = 1) and trans‐(Ph4P)2[Pt(N3)4I2] (triclinic, space group P1, a = 10.186(2), b = 10.506(2), c = 12.219(2) Å, α = 91.847(16), β = 101.385(14), γ = 111.965(18)°, Z = 1) reveal, that the compounds crystallize isotypically with octahedral centrosymmetric complex anions. The bond lengths are Pt–Cl = 2.324, Pt–Br = 2.472, Pt–I = 2.619 and Pt–N = 2.052–2.122 Å. The approximate linear Azidoligands with Nα–Nβ–Nγ‐angles = 172.1–176.8° are bonded with Pt–Nα–Nβ‐angles = 116.2–121.9°. In the vibrational spectra the platinum halogen stretching vibrations of trans‐(n‐Bu4N)2[Pt(N3)4X2] are observed in the range of 327–337 (X = Cl), at 202 (Br) and in the range of 145–165 cm–1 (I), respectively. The platinum azide stretching modes of the three complex salts are in the range of 401–421 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 1.90, fd(PtBr) = 1.64, fd(PtI) = 1.22, fd(PtNα) = 2.20–2.27 and fd(NαNβ, NβNγ) = 12.44 mdyn/Å.  相似文献   

18.
Synthesis and Crystal Structure of [(Ph3PAu)3NPPh3][PF6]2, a Gold(I) Phosphoraneiminato Complex The photolytic reaction of Ph3PAuN3 with Cr(CO)6 in THF yields the phosphoraneiminato complex [(Ph3PAu)3NPPh3]2+ in low yield as well as the cluster cation [(Ph3PAu)8]2+ as the main product. The phosphoraneiminato complex crystallizes from CH2Cl2 with [PF6]? ions as [(Ph3PAu)3NPPh3][PF6]2·CH2Cl2 in the triclinic space group with a = 1200.8(1), b = 1495.6(2), 2053.5(5), α = 86.97(2)°, β = 82.79(1)°, γ = 81.87(2)°, and Z = 2. The phosphoraneiminato ligand bridges through its N atom three Au atoms, which itself are connected to each other by weak aurophilic interactions.  相似文献   

19.
The title compound [Cu2(phen)2(C9H14O4)2] · 6 H2O was prepared by the reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), azelaic acid and Na2CO3 in a CH3OH/H2O solution. The crystal structure (monoclinic, C2/c (no. 15), a = 22.346(3), b = 11.862(1), c = 17.989(3) Å, β = 91.71(1)°, Z = 4, R = 0.0473, wR2 = 0.1344 for 4279 observed reflections) consists of centrosymmetric dinuclear [Cu2(phen)2(C9H14O4)2] complexes and hydrogen bonded H2O molecules. The Cu atom is square‐planar coordinated by the two N atoms of the chelating phen ligand and two O atoms of different bidentate bridging azelaate groups with d(Cu–N) = 2.053, 2.122(2) Å and d(Cu–O) = 1.948(2), 2.031(2) Å. Two azelaate anions bridge two common Cu atoms via the terminal O atoms (d(C–O) = 1.29(2) Å; d(C–C) = 1.550(4)–1.583(4) Å). Phen ligands of adjacent complexes cover each other at distances of about 3.62 Å, indicating π‐π stacking interaction, by which the complexes are linked to 1 D bands.  相似文献   

20.
Syntheses and Crystal Structures of (η6‐Diarene)TiII‐bis(tetrachloroaluminate) Complexes, Diarene = Biphenyl or 3,5,3′,5′‐Tetramethyl‐biphenyl Syntheses of (η6‐diarene)TiII(AlCl4)2 complexes were performed by the Fischer‐Hafner method. The diarenes employed were biphenyl and 3,5,3′,5′‐tetramethyl‐biphenyl. In each of the resulting complexes, (η6‐C12H10)TiII(AlCl4)2 ( 1 ) and (η6‐C16H18)TiII(AlCl4)2 ( 2 ), only one C6‐ring of a diarene is coordinatively active. 1 : Space group Pbca, Z = 8, lattice constants at 20 °C: a = 16.864(3), b = 13.931(3), c = 18.807(3) Å; R1 = 0.048. 2 : Space group P21/n, Z = 4, lattice constants at 20 °C: a = 9.775(1), b = 13.720(1), c = 20.214(1) Å; β = 95.50(1)°; R1 = 0.050.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号