首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Iodostannates with Polymeric Anions: (Me3PhN)4 [Sn3I10], [Me2HN–(CH2)2–NMe2H]2 [Sn3I10], and [Me2HN–(CH2)2–NMe2H] [Sn3I8] The polymeric iodostannate anions in (Me3PhN)4 [Sn3I10] ( 1 ) and [Me2HN–(CH2)2–NMe2H]2 [Sn3I10] ( 2 ) consist of Sn3I12‐trioctahedra, which share four common iodine atoms with adjacent units to form infinite layers in 1 and polymeric chains in 2 . In the anion of [Me2HN–(CH2)2–NMe2H] [Sn3I8] ( 3 ) distorted SnI6 octahedra sharing common edges and vertices form a two‐dimensional network. (Me3PhN)4 [Sn3I10] ( 1 ): Space group C2/c (No. 15), a = 2406.9(2), b = 968.26(7), c = 2651.7(2) pm, β = 111.775(9), V = 5738.9(8) · 106 pm3; [Me2HN–(CH2)2–NMe2H]2 [Sn3I10] ( 2 ): Space group P21/n (No. 14), a = 1187.2(1), b = 1554.4(1), c = 1188.9(1) pm, β = 116.620(8), V = 1961.4(3) · 106 pm3; [Me2HN–(CH2)2–NMe2H] [Sn3I8] ( 3 ): Space group P21/c (No. 14), a = 1098.9(2), b = 803.93(7), c = 1571.5(2) pm, β = 102.96(1), V = 1352.9(2) · 106 pm3.  相似文献   

2.
Iodostannates(II) with Anionic [SnI3] Chains – the Transition from Five to Six‐coordinated SnII The iodostannates (Me4N) [SnI3] ( 1 ), [Et3N–(CH2)4–NEt3] [SnI3]2 ( 2 ), [EtMe2N–(CH2)2–NEtMe2] [SnI3]2 ( 3 ), [Me2HN–(CH2)2–NH–(CH2)2–NMe2H] [SnI3]2 ( 4 ), [Et3N–(CH2)6–NEt3] [SnI3]2 ( 5 ) and [Pr3N–(CH2)4–NPr3]‐ [SnI3]2 · 2 DMF ( 6 ) with the same composition of the anionic [SnI3] chains show differences in the coordination of the SnII central atoms. Whereas the Sn atoms in 1 and 2 are coordinated in an approximately regular octahedral fashion, in compounds 3 – 6 the continuous transition to coordination number five in (Pr4N) [SnI3] ( 7 ) or [Fe(dmf)6] [SnI3]2 ( 8 ) can be observed. Together with the shortening of two or three Sn–I bonds, the bonds in trans position are elongated. Thus weak, long‐range Sn…I interactions complete the distorted octahedral environment of SnI4 groups in 3 and 4 and SnI3 groups in 5 and 6 . Obviously the shape, size and charge of the counterions and the related cation‐anion interactions are responsible for the variants in structure and distortion.  相似文献   

3.
Polymeric Iodoplumbates – Synthesis and Crystal Structures of (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF, (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14] · DMF, and (Me3N–C2H4–NMe3)2[Pb2I7]I (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF ( 1 ) and (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14] · DMF ( 2 ) have almost the same composition, but completely different structures. Both compounds are formed selectively depending on the reaction and crystallization conditions. In 2 the PbII atoms are coordinated either by six bridging I ligands in the two-dimensional [Pb5I14]4– network or by six DMF ligands in the [Pb(dmf)6]2+ cations. In contrast, (Me3N–C2H4–NMe3)2[Pb2I7]I ( 3 ) contains non-coordinating I anions between the iodoplumbate layers. The iodoplumbate anions in 2 and 3 consist of face and corner sharing PbI6 octahedra, whereas in 1 PbI6 and PbI5(dmf) octahedra share common edges to form a one-dimensional polymeric section of the PbI2 structure. (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF ( 1 ): Space group P1, a = 920.1(3), b = 1597.2(5), c = 1613.9(4) pm, α = 66.02(2), β = 84.53(2), γ = 85.99(2)°, V = 2156(1) · 106 pm3; (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14]·DMF ( 2 ): Space group P21, a = 1201.21(9), b = 3031.1(2), c = 1294.96(9) pm, β = 108.935(7)°, V = 4459.8(5) · 106 pm3; (Me3N–C2H4–NMe3)2[Pb2I7]I ( 3 ): Space group Pnma, a = 2349.9(2), b = 1623.83(9), c = 980.75(7) pm, V = 3742.4(5) · 106 pm3.  相似文献   

4.
5.
Synthesis and Crystal Structures of the Phosphoraneiminato Complexes [SnI(NPPh3)]2 and [SnI3(NPPh3)]2 The phosphoraneiminato complex of the divalent tin, [SnI(NPPh3)]2 ( 1 ), originates from the reaction of metallic tin with N-iodine triphenylphosphaneimine, INPPh3, in dichloromethane suspension. 1 forms yellow, moisture sensitive crystals, which can be converted into the red phosphoraneiminato complex of the tetravalent tin, [SnI3(NPPh3)]2 ( 2 ), by oxidation with iodine. According to the crystal structure analyses 1 and 2 have centrosymmetric dimeric molecular structures in which the tin atoms are linked via the N atoms of the NPPh3 groups. The tin atoms in 1 have a ψ-tetrahedral coordination, those in 2 a trigonal-bipyramidal one. 1 : Space group P 1, Z = 1, lattice dimensions at –80 °C: a = 779.0(1), b = 1080.1(1), c = 1170.4(1) pm, α = 64.49(1)°, β = 88.42(1)°, γ = 79.13(1)°, R = 0.0293. 2 : Space group P21/n, Z = 2, lattice dimensions at –80 °C: a = 1252.4(1), b = 1421.3(3), c = 1260.1(1) pm, β = 108.50(1)°, R = 0.0518.  相似文献   

6.
Crystal Structures of the Azido Platinates (AsPh4)2[Pt(N3)4] and (AsPh4)2[Pt(N3)6] The crystal structures of the two homoleptic azido platinates (AsPh4)2[Pt(N3)4] ( 1 ) and (AsPh4)2[Pt(N3)6] ( 2 ) were determined by X‐ray diffraction at single crystals. In 1 the [Pt(N3)4]2– ions are without crystallographic site‐symmetry, and the platinum atoms show a planar surrounding. The [Pt(N3)6]2– ions in 2 are centrosymmetric (Ci) with an octahedral surrounding at the platinum atoms. While 1 is highly explosive, 2 is of significantly greater stability. This behaviour is explained by the packing conditions. 1 : Space group P21/n, Z = 6, lattice dimensions at –80 °C: a = 1045.3(1), b = 1620.2(1), c = 4041.0(3) pm; β = 96.70(1)°; R1 = 0.0654. 2 : Space group P1, Z = 1, lattice dimenstions at –80 °C: a = 1027.6(1), b = 1049.1(2), c = 1249.9(3) pm; α = 88.27(1)°, β = 74.13(1)°, γ = 67.90(1)°; R1 = 0.0417.  相似文献   

7.
Synthesis and Crystal Structures of the Samarium Complexes [SmI2(DME)3] and [Sm2I(NPPh3)5(DME)] When treated with ultrasound, the reaction of samarium metal with N-iodine-triphenylphosphaneimine in 1,2-dimethoxyethane (DME) leads to the two samarium complexes [SmI2(DME)3] ( 1 ) and [Sm2I(NPPh3)5(DME)] ( 2 ), which are separated from each other by fractional crystallization. 1 could be isolated in two different crystallographic forms, namely as brownish black crystals ( 1 a ) and as violet-black crystals ( 1 b ), both of them are characterized by crystal structure analyses. 1 a : Space group P21/c, Z = 4, lattice dimensions at –80 °C: a = 1459.4(1), b = 1314.4(1), c = 2293.6(2) pm, β = 99.245(8)°, R = 0.0344. The structure of 1 a holds two crystallographically independent molecules [SmI2(DME)3], in which the samarium atoms have coordination number eight. The two individuals differ from each other particularly in their I–Sm–I bond angles, which are 157.94 and 178.45°. 1 b : Space group P21, Z = 2, lattice dimensions at –80 °C: a = 849.4(3), b = 1060.1(3), c = 1235.1(6) pm, b = 93.86(5)°, R = 0.0251. 1 b has a molecular structure similar to that of 1a with a bond angle I–Sm–I of 158.40°. The phosphoraneiminato complex [Sm2I(NPPh3)5(DME)] ( 2 ) forms colourless, moisture sensitive crystals which contain two molecules DME per formula unit. 2 · 2 DME: Space group P1, Z = 2, lattice dimensions at –80 °C: a = 1405.0(4), b = 1656.5(3), c = 2208.3(7) pm, α = 89.60(3)°, β = 72.96(4)°, γ = 78.70(3)°, R = 0.0408. In 2 the two samarium atoms are linked via the μ-N atoms of two phosphoraneiminato ligands to form a planar Sm2N2 four-membered ring. One of the Sm atoms is terminally coordinated by the N atoms of two (NPPh3) groups, thus achieving a distorted tetrahedral surrounding. The second Sm atom is coordinated by the N atom of one (NPPh3) group, by the terminally bonded iodine atom, and by the O atoms of the DME chelate, thus achieving a distorted octahedral surrounding.  相似文献   

8.
New Phosphoraneiminato Complexes of Molybdenum and Tungsten. Crystal Structures of [(μ‐S2N2){MoCl4(NPPh3)}2], [Mo(NPPh3)4][BF4]2, [W(S)2(NPPh3)2], and [Ph3PNH2]+[SCN] The binuclear molybdenum(V)phosphoraneiminato complex [(μ‐S2N2){MoVCl4(NPPh3)}2] ( 1 ) has been prepared by the reaction of the chlorothionitreno complex [MoVICl4(NSCl)]2 with Me3SiNPPh3 in dichloromethane forming green crystals. The temperature dependent magnetic susceptibility in the range of 2–30 K shows ideal behaviour according to the Curie law with a magnetic moment of 1.60 B.M. According to the crystal structure determination 1 forms centrosymmetric molecules in which the molybdenum atoms are connected by the nitrogen atoms of the S2N2 molecule. In trans‐position to it the nitrogen atoms of the phosphoraneiminato groups (NPPh3) are coordinated with Mo–N bond lengths of 171(1) pm. The tetrakis(phosphoraneiminato) complex [Mo(NPPh3)4]‐ [BF4]2 ( 2 ) has been obtained as colourless crystal needles by the reaction of MoN(NPPh3)3 with boron trifluoride etherate in toluene solution. In the dication the molybdenum atom is tetrahedrally coordinated by the nitrogen atoms of the (NPPh3) groups with Mo–N bond lengths of 179,8–181,0(3) pm. The dithio‐bis(phosphoraneiminato) tungsten complex [W(S)2(NPPh3)2] ( 3 ) is formed as yellow crystals as well as [Ph3PNH2]+[SCN] ( 4 ) from the reaction of WN(NPPh3)3 with carbon disulfide in tetrahydrofurane in the presence of traces of water. 3 has a monomeric molecular structure with tetrahedrally coordinated tungsten atom with bond lengths W–S of 214.5(5) pm and W–N of 179(1) pm. In the structure of 4 the thiocyanate ions are associated by hydrogen bonds of the NH2 group of the [Ph3PNH2]+ ion to give a zigzag chain. 1 : Space group Pbca, Z = 4, lattice constants at –80 °C: a = 1647.9(3), b = 1460.8(2), c = 1810.4(4) pm; R1 = 0.0981. 2 : Space group P1, Z = 2, lattice constants at –80 °C: a = 1162.5(1), b = 1238.0(1), c = 2346.2(2) pm; α = 103.14(1)°, β = 90.13(1)°, γ = 97.66(1)°; R1 = 0.0423. 3 : Space group Fdd2, Z = 8, lattice constants at –80 °C: a = 3310.1(4), b = 2059.7(2), c = 966,7(1) pm; R1 = 0.0696. 4 : Space group P212121, Z = 4, lattice constants at –80 °C: a = 1118.4(1), b = 1206.7(1), c = 1279.9(1) pm; R1 = 0.0311.  相似文献   

9.
Synthesis and Structures of the Multinuclear Rhenium Nitrido Complexes [Re2N2Cl4(PMe2Ph)4(MeCN)] and [Re4N3Cl9(PMe2Ph)6] The binuclear rhenium complex [Re2N2Cl4(PMe2Ph)4(MeCN)] ( 1 ) is obtained as a byproduct of the synthesis of [(Me2PhP)3(MeCN)ClReNZrCl5] from [ReNCl2(PMe2Ph)3] and [ZrCl4(MeCN)2] in toluene. It crystallizes as 1 · 2 toluene in the monoclinic space group P21/n with a = 1517.0(3); b = 1847.7(2); c = 1952.4(6) pm; β = 106.44(1)° and Z = 4. The two Re atoms are connected by an asymmetric nitrido bridge Re≡N–Re with distances Re–N of 169.9(5) and 208.7(5) pm. In course of the reaction of [ReNCl2(PMe2Ph)3] with [ZrCl4(THF)2] in CH2Cl2 hydrochloric acid is formed by acting of the Lewis acid on the solvent. HCl protonates and eliminates phosphine ligands of the educt [ReNCl2(PMe2Ph)3] to form the phosphonium salt [PMe2PhH]2[ZrCl6] ( 2 ). It crystallizes in the monoclinic space group C2/c with a = 1536.9(3); b = 1148.8(1); c = 1402.2(3) pm, β = 100.70(2)° and Z = 4. The remaining fragments of the rhenium complex combine to yield the tetranuclear mixed valent complex [Re4N3Cl9(PMe2Ph)6] ( 3 ), crystallizing as 3 · CH2Cl2 in the triclinic space group P 1 with a = 1312.9(19); b = 1661.4(2); 1897.1(2) pm; α = 78.62(1)°; β = 86.77(1)°; γ = 68.28(1)° and Z = 2. The four Re atoms occupy the corners of a tetrahedron. Its edges are formed by three nitrido and three chloro bridges. The asymmetric nitrido bridges Re≡N–Re are characterized by short distances in the range of 172(2) to 176(3) pm and long distances of 194(3) to 204(2) pm. The angles Re–N–Re are between 154(1) and 160(1)°.  相似文献   

10.
The SCN Ion as an Ambidentate Ligand – Synthesis and Crystal Structures of (Bu4N)4[Ag2Fe2(SCN)12] and (Et4N)2 [Ag2Fe(SCN)6] In (Bu4N)4[Ag2Fe2(SCN)12] · 2 CH3NO2 ( 1 ) and (Et4N)2[Ag2Fe(SCN)6] ( 2 ) the ambidentate SCN anions link Ag+ with Fe3+ and Fe2+ centers, respectively. The tetranuclear anions in 1 are built from [Fe(NCS)6]3– groups connected by Ag+ ions. In 2 the same bridging pattern leads to polymeric anionic chains containing [Fe(NCS)6]4– groups linked by Ag+ ions. (Bu4N)4[Ag2Fe2(SCN)12] · 2 CH3NO2 ( 1 ): a = 1184.10(10), b = 1370.80(10), c = 1776.5(2) pm, α = 99.090(10), β = 102.100(10), γ = 100.360(10)°, V = 2715.5(4) · 106 pm3, space group P1; (Et4N)2[Ag2Fe(SCN)6] ( 2 ): a = 1607.0(2), b = 1006.92(9), c = 1096.13(9) pm, V = 1773.7(3) · 106 pm3, space group Pnnm.  相似文献   

11.
Molybdenum and Tungsten Complexes with MNS Sequences. Crystal Structures of [MoCl3(N3S2)(1,4‐dioxane)2] and [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 The cyclo‐thiazeno complexes [Cl3MNSNSN]2 of molybdenum and tungsten react with 1,4‐dioxane in dichloromethane suspension to give the binuclear donor‐acceptor complexes [μ‐(1,4‐dioxane){MCl3(N3S2)}2] which are characterized by IR spectroscopy. With excess 1,4‐dioxane the molybdenum compound forms the complex [MoCl3(N3S2)(1,4‐dioxane)2] in which, according to the crystal structure determination, one of the dioxane molecules coordinates at the molybdenum atom, the other one at one of the sulfur atoms of the cyclo‐thiazeno ring. The μ‐(NSN2–) complex [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 has been obtained by the reaction of [MoN(OCMe3)3] with trithiazyle chloride in carbontetrachloride solution. According to the crystal structure determination this compound forms centrosymmetric dimeric molecules via two of the nitrogen atoms of two of the μ‐(NSN) groups to give a Mo2N2 fourmembered ring. [MoCl3(N3S2)(1,4‐dioxane)2]: Space group P21/c, Z = 4, lattice dimensions at –70 °C: a = 1522.9(2); b = 990.3(1); c = 1161.7(1) pm; β = 106.31(1)°, R1 = 0.0317. [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 · 4 CCl4: Space group P21/c, Z = 2, lattice dimensions at –83 °C: a = 1216.7(1); b = 2193.1(2); c = 1321.8(1) pm; β = 98.23(1)°; R1 = 0.0507.  相似文献   

12.
(PPh4)2[Cl2Re(N3S2)(μ‐NSN)(μ‐N≡ReCl3)]2 – a Rhenium(VII) Complex with a Nitrido, a Dinitridosulfato(II), and a Rhena‐3,5‐dithia‐2,4,6‐triazino Function The title compound has been prepared from PPh4[ReVIICl4(NSCl)2] with N(SiMe3)3 in dichloromethane solution to give red‐brown single crystals, which were suitable for a crystal structure determination. As a by‐product PPh4[ReNCl4] is formed. (PPh4)2[Cl2ReVII(N3S2)(μ‐NSN)(μ‐N≡ReVIICl3)]2 ( 1 ): Space group P21/c, Z = 2, lattice dimensions at –80 °C: a = 1280.8(2), b = 1017.5(1), c = 2467.8(3) pm, β = 95.04(1)°, R = 0.049. The complex anion of 1 consists of a planar ReN3S2‐heterocycle which is connected with the second rhenium atom by a μ‐nitrido bridge as well as by a μ‐dinitridosulfato(II) ligand to form a planar Re2(N)(NSN) six‐membered heterocycle. This [Cl2Re(N3S2)(μ‐NSN)(μ‐N≡ReCl3)] unit dimerizes via one of the N‐atoms of the (NSN)4– ligand to give a centrosymmetric Re2N2 four‐membered ring.  相似文献   

13.
Synthesis and Structure of [(Me2PhP)3Cl2ReN]2ReCl4, [(Me2PhP)3Cl2ReN]2ReCl4 · 2 SbCl3 and [Re(NH)Cl2(PMe2Ph)3][SbCl6] The reaction of ReNCl2(PMePh)3 with SbCl5 in toluene yields the trinuclear complex [(Me2PhP)3Cl2Re≡N]2ReCl4 · 2 SbCl3 ( 1 · 2 SbCl3). It forms triclinic crystals with the composition 1 · 2 SbCl3, as well as monoclinic crystals 1 · 2 SbCl3 · 4 C7H8. The monoclinic crystals with the space group P21/c, and a = 1212.3(2), b = 2098.5(4), c = 1827.7(3) pm, β = 95.51(1)°, Z = 2, have been used for a crystal structure determination. In the centrosymmetric complex 1 two complexes ReNCl2(PMe2Ph)3 coordinate with their nitrido ligands a square planar, central unit ReCl4. The SbCl3 molecules are coordinated by chlorine bridges to Cl atoms of 1 , and, in addition, connect the complexes 1 with each other. The SbCl3 free compound 1 is obtained in good yield by the reaction of ReNCl2(PMePh)3 with ReCl4(NCEt)2. It crystallizes in the triclinic space group P1 with a = 1037.7(3), b = 1153.0(2), c = 1393.8(3) pm, α = 72.31(2)°, β = 74.06(2)°, γ = 67.94(2)°, and Z = 1. The bond lengths of the Re–N triple bonds are 172 pm in 1 and 170 pm in 1 · 2 SbCl3. By the reaction of ReNCl2(PMePh)3 with SbCl5 in CH2Cl2 the solvent is decomposed forming HCl which protonates the nitrido ligand to afford the imido complex [Re(NH)Cl2(PMe2Ph)3][SbCl6] ( 2 ) crystallizing in the monoclinic space group P21/n with a = 1221.4(2), b = 1358.6(2), c = 2177.3(1) pm, β = 92,72(1)° and Z = 4. The Re–N distance in the almost linear unit Re≡N–H is 169,1 pm.  相似文献   

14.
Crystal Structures of trans ‐[NiBr2(pyridine)4] and [Ni(HNPEt3)4]I2 Turquoise single crystals of trans‐[NiBr2(pyridine)4] have been obtained by the reaction of excess pyridine with nickel(II) bromide/diacetonealcohol. According to the crystal structure determination the nickel atom is octahedrally coordinated by the two bromine atoms in trans‐position and by the nitrogen atoms of the pyridine molecules. Space group Pna21, Z = 4, lattice dimensions at 20 °C: a = 1592.9(2), b = 943.8(1), c = 1413.0(2) pm, R1 = 0.0492. Dark blue single crystals of the phosphoraneimine complex [Ni(HNPEt3)4]I2 have been obtained from NiI2/H2O with excess Me3SiNPEt3 and subsequent recrystallization from acetonitrile. According to the crystal structure determination the nickel atom is tetrahedrally coordinated by the nitrogen atoms of the HNPEt3 molecules. The iodide ions are connected via N–H…I contacts with the cation to form an ion triple. Space group P21/c, Z = 4, lattice dimensions at –80 °C: a = 1934.9(2), b = 1078.3(1), c = 1966.3(2) pm, β = 111.040(8)°; R1 = 0.043.  相似文献   

15.
Iodoplumbates with Polymeric Anions – Synthesis and Crystal Structures of [Na3(OCMe2)12][Pb4I11(OCMe2)], (Ph4P)2[Pb5I12], and (Ph4P)4[Pb15I34(dmf)6] Reactions of PbI2 with NaI in polar organic solvents followed by crystallization with large cations yield iodoplumbate complexes with various compositions and structures. [Na3(OCMe2)12][Pb4I11(OCMe2)] 3 , (Ph4P)2[Pb5I12] 4 and (Ph4P)4[Pb15I34(dmf)6] 7 contain one-dimensional infinite anionic chains of face- or edge-sharing PbI6 or PbI5L (L = acetone, DMF) octahedra. [Na3(OCMe2)12][Pb4I11(OCMe2)] 3 : Space group P1 (No. 1), a = 1120.3(5), b = 1265.3(6), c = 1608.3(8) pm, α = 74.64(4), β = 70.40(4), γ = 85.24(4)°, V = 2071(2) · 106 pm3; (Ph4P)2[Pb5I12] 4 : Space group C2/c (No. 15), a = 787.00(10), b = 2812.0(5), c = 3115.9(5) pm, β = 96.240(13)°, V = 6885(2) · 106 pm3; (Ph4P)4[Pb15I34(dmf)6] 7 : Space group P21/n (No. 14), a = 2278.8(4), b = 1782.6(3), c = 2616.8(4) pm, β = 114.432(13)°, V = 9678(3) · 106 pm3.  相似文献   

16.
Alkali Metal Phosphoraneiminates. New Syntheses and Crystal Structures of [RbNPPh3]6 and [CsNPPh3]4 The alkali‐metal phosphoraneiminates MNPPh3 with M = Na, K, Rb, Cs have been synthesized by reactions of Ph3PI2 with the alkali‐metal amides in liquid ammonia and were obtained as pure samples by subsequent extraction with toluene. The ethyl derivative KNPEt3 has been prepared by an analogous route from Et3PBr2 and extraction with hexane. Single crystals of the phosphoraneiminates of rubidium and cesium are obtainable by crystallization from toluene and toluene/hexane, respectively. They were suitable for crystal structure determinations. [RbNPPh3]6 · 41/2 toluene ( 1 ): space group P1, Z = 2, lattice dimensions at 193 K: a = 1525.5(2); b = 1902.9(2); c = 2178.3(2) pm; α = 95.435(12)°; β = 91.145(12)°; γ = 90.448(12)°; R1 = 0.0529. The compound forms a Rb6N6 skeleton of a double cube with a common face of two rubidium and two nitrogen atoms, the latter being fivefold coordinated by four rubidium atoms and the phosphorus atom. [CsNPPh3]4 · 2 toluene · 33/4 hexane ( 2 a ): space group Fd3, Z = 8, lattice dimensions at 123 K: a = b = c = 2679.7(1) pm; R1 = 0.0405. [CsNPPh3]4 · 2 toluene ( 2 b ): space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1418.9(1); b = 2258.9(1); c = 2497.6(1) pm; β = 91.055(6)°; R1 = 0.0278. Both cesium compounds form Cs4N4 heterocubane structures which are different by means of the packing and by different bond angles at the cesium and nitrogen atoms.  相似文献   

17.
Ligand Exchange Reactions of Bis(acetylacetonato)dioxo-molybdenum(VI). Crystal Structures of [Salicylaldehyde-benzoylhydrazonato(2–)]dioxo-methanol-molybdenum(VI) and [Benzoylacetone-benzoylhydrazonato(2–)]dioxo-triphenylphosphaneoxide-molybdenum(VI) The products of ligand exchange reactions between bis(acetylacetonato)dioxo-molybdenum(VI) and tridentate diacidic ligands H2L in the presence of triphenylphosphane were found by mass spectrometry to be complexes of the type MoO2L. In the case of salicylaldehyde 2-hydroxyanil MoL2 could also be identified. The compounds MoO2L were crystallized as complexes with methanol or triphenylphosphane oxide. Crystallographic data see “Inhaltsübersicht”.  相似文献   

18.
Pyridine Complexes of Rare Earth Element Trichlorides. Syntheses and Crystal Structures of [YCl3(py)4] and [LnCl3(py)4] · 0.5 py with Ln = La and Er The pyridine complexes [YCl3(py)4] ( 1 ), [LaCl3(py)4] · 0.5 py ( 2 · 0.5 py), and [ErCl3(py)4] · 0.5 py ( 3 · 0.5 py) have been prepared from the diacetone‐alcohol complexes [LnCl3(DAA)2] or directly from the metal trichlorides with excess pyridine to give colourless, only sparingly moisture sensitive crystals. They were characterized by IR spectroscopy and by crystal structure determinations. 1 : Space group Pbca, Z = 16, lattice dimensions at –80 °C: a = 1647.4(1), b = 1743.1(1), c = 3190.5(1) pm, R1 = 0.031. 2 · 0,5 Py: Space group P21/n, Z = 4, lattice dimensions at –80 °C: a = 978.9(1), b = 1704.5(1), c = 1589.5(1) pm, β = 103.61(1)°, R1 = 0.0281. 3 · 0,5 Py: Space group P21/n, Z = 4, lattice dimensions at –80 °C: a = 970.1(1), b = 1706.4(1), c = 1566.1(1) pm, β = 103.46(1)°, R1 = 0.0232. All complexes realize monomeric molecular structures with the metal atom in a distorted pentagonal‐bipyramidal coordination. One of the chlorine atoms and the four pyridine molecules are in the equatorial plane.  相似文献   

19.
Syntheses and Crystal Structures of the Nitrido Complexes [MoNCl3(MeCN)]4 and [MoNCl2(bipy)]4 [MoNCl3(MeCN)]4 ( 1 ) is obtained by the reaction of MoCl4(MeCN)2 with Me3SiN3 in CH2Cl2 as a sparingly soluble and water sensitive red compound. It crystallizes as 1 · 3 CH2Cl2 in the triclinic space group P 1 with a = 889.7(1), b = 1004.8(1), c = 1270.4(2) pm; α = 71.69(1)°; β = 73.63(1)°; γ = 86.32(1)°, and Z = 1. It forms centrosymmetric tetranuclear complexes, in which the Mo atoms are connected by asymmetric and linear nitrido bridges with distances Mo–N of 167.5 and 214.3 pm. The acetonitrile molecules are coordinated with a long bond length Mo–N of 241 pm in trans position to the Mo–N triple bond. The reaction of 1 with 2,2′‐bipyridine in CH2Cl2/THF yields the tetranuclear molybdenum(V) complex [MoNCl2(bipy)]4 ( 2 ) as main product. It crystallizes in the tetragonal space group P42/n with a = 1637.5(2), c = 1018.3(2) pm, and Z = 2. In the tetranuclear complexes with the symmetry S4 linear and asymmetric nitrido bridges connect the Mo atoms to form an almost planar eight membered Mo–N ring with distances Mo–N of 173 and 203 pm. The bipyridine molecules coordinate as chelates in cis and trans position to the Mo–N triple bond. In this case the trans influence causes different Mo–N distances of 219 and 232 pm.  相似文献   

20.
Polysulfonylamines. CXVI. Destructive Complexation of the Dimeric Diorganyltin(IV) Hydroxide [Me2Sn(A)(μ‐OH)]2 (HA = Benzene‐1,2‐disulfonimide): Formation and Structures of the Mononuclear Complexes [Me2Sn(A)2(OPPh3)2] and [Me2Sn(phen)2]2⊕ · 2 A · MeCN Destructive complexation of the dimeric hydroxide [Me2Sn(A)(μ‐OH)]2, where A is deprotonated benzene‐1,2‐disulfonimide, with two equivalents of triphenylphosphine oxide or 1,10‐phenanthroline in hot MeCN produced, along with Me2SnO and water, the novel coordination compounds [Me2Sn(A)2(OPPh3)2] ( 3 , triclinic, space group P 1) and [Me2Sn(phen)2]2⊕ · 2 A · MeCN ( 4 , monoclinic, P21/c). In the uncharged all‐trans octahedral complex 3 , the heteroligands are unidentally O‐bonded to the tin atom, which resides on a crystallographic centre of inversion [Sn–O(S) 227.4(2), Sn–O(P) 219.6(2) pm, cis‐angles in the range 87–93°; anionic ligand partially disordered over two equally populated sites for N, two S and non‐coordinating O atoms]. The cation occurring in the crystal of 4 has a severely distorted cis‐octahedral C2N4 coordination geometry around tin and represents the first authenticated example of a dicationic tin(IV) dichelate [R2Sn(L–L′)2]2⊕ to adopt a cis‐structure [C–Sn–C 108.44(11)°]. The five‐membered chelate rings are nearly planar, with similar bite angles of the bidentate ligands, but unsymmetric Sn–N bond lengths, each of the longer bonds being trans to a methyl group [ring 1: N–Sn–N 71.24(7)°, Sn–N 226.81(19) and 237.5(2) pm; ring 2: 71.63(7)°, 228.0(2) and 232.20(19) pm]. In both structures, the bicyclic and effectively CS symmetric A ions have their five‐membered rings distorted into an envelope conformation, with N atoms displaced by 28–43 pm from the corresponding C6S2 mean plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号