首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MoCl4, ReCl4, and ReCl5 react with PCl5 in sealed glass ampoules at temperatures between 220° and 320° to [PCl4]2[Mo2Cl10] ( 1 ) [PCl4]2[Re2Cl10] ( 2 ), and [PCl4]3[ReCl6]2 ( 3 ). 2 crystallizes isotypically to the previously reported 1 and the respective titanium and tin containing analogues. The structure (triclinic, P1, Z = 1, a = 897.3(2), b = 946.0(2), c = 687.13(9) pm, α = 95.59(2)°, β = 95.80(2)°, γ = 101.07(2)°, V = 565.4(2) 106 pm3) is built of tetrahedral [PCl4]+ and edge sharing double octahedral [Re2Cl10]2– ions and can be derived from a hexagonal closest packing of Cl ions with tetrahedral and octahedral holes partially filled by P(V) and Re(IV), respectively. 3 crystallizes isotypically to [PCl4]3[PCl6][MCl6] (M = Ti, Sn) (tetragonal, P 42/mbc, Z = 4, a = 1496.2(1), c = 1363.2(2) pm). Because no evidence was found for the presence of [PCl6] ions, Re in 3 has to be of mixed valency with ReIV and ReV sharing the same crystallographic site. The structure can be derived from a cubic closest packing or alternatively from an only sparsely distorted body centered cubic arrangement of Cl ions which is rarely found for anion arrays. The tetrahedral and octahedral holes are partially filled by PV and MIV/V, respectively. Magnetic measurements show all three compounds to be paramagnetic and confirm the oxidation state IV for Mo and Re in 1 and 2 and the mixed valence (IV/V) for Re in 3 .  相似文献   

2.
SeBr3[AlBr4] and TeI3[AlI4] – two further Compounds in the SCl3[AlCl4] Structure Type The reaction of SeBr4 and AlBr3 in a closed glass ampoule at 150°C yields quantitatively SeBr3[AlBr4] in form of yellow moisture sensitive crystals. From Te, two equivalents of I2, and AlI3 one obtains TeI3[AlI4] in form of dark red, moisture sensitive crystals. Both compounds crystallize monoclinic in the space group Pc (SeBr3[AlBr4]: a = 670.7(7) pm, b = 663.9(5) pm, c = 1 428.6(2) pm, β = 101.21(9)°, TeI3[AlI4]: a = 731.9(1) pm, b = 730.8(1) pm, c = 1 565.5(3) pm, β = 102.01(2)°). They are isotypic and have the SCl3[AlCl4] structure type. The structures are built of tetrahedral AlX4? ions and of pyramidal EX3+ ions (E = S, Se, Te; X = Cl, Br, I). The chalcogen atoms are additionally coordinated by halogen atoms of surrounding AlX4? ions, corresponding to a strongly distorted octahedral coordination EX3+3.  相似文献   

3.
The crystal structures of Ce2[SeO3]3 and Pr2[SeO3]3 have been refined from X‐ray single‐crystal diffraction data. The compounds were obtained using stoichiometric mixtures of CeO2, SeO2, Ce, and CeCl3 (molar ratio 3:3:1:1) or Pr6O11, SeO2, Pr, and PrCl3 (molar ratio 3:27:1:2) heated in evacuated sealed silica tubes at 830 °C for one week. Ce2[SeO3]3 crystallizes orthorhombically (space group: Pnma), with four formula units per unit cell of the dimensions a = 839.23(5) pm, b = 1421.12(9) pm, and c = 704.58(4) pm. Its structure contains only a single crystallographically unique Ce3+ cation in tenfold coordination with oxygen atoms arranged as single‐face bicapped square antiprism and two different trigonal pyramidal [SeO3]2? groups. The connectivity among the [CeO10] polyhedra results in infinite sheets of face‐ and edge‐sharing units propagating normal to [001]. Pr2[SeO3]3 is monoclinic (space group: P21/n) with twelve formula units per unit cell of the dimensions a = 1683.76(9) pm, b = 705.38(4) pm, c = 2167.19(12) pm, and β = 102.063(7)°. Its structure exhibits six crystallographically distinct Pr3+ cations in nine‐ and tenfold coordination with oxygen atoms forming distorted capped square antiprisms or prisms (CN = 9), bicapped square antiprisms and tetracapped trigonal prisms (CN = 10), respectively. The [PrO9] and [PrO10] polyhedra form double layers parallel to (111) by edge‐ or face‐sharing, which are linked by nine different [SeO3]2? groups to build up a three‐dimensional framework. In both compounds, the discrete [SeO3]2? anions (d(Se4+–O2?) = 166–174 pm) show the typical Ψ1‐tetrahedral shape owing to the non‐bonding “lone‐pair” electrons at the central selenium(IV) particles. Moreover, their stereochemical “lone‐pair” activity seems to flock together in large empty channels running along [010] in the orthorhombic Ce2[SeO3]3 and along [101] in the monoclinic Pr2[SeO3]3 structure, respectively.  相似文献   

4.
Syntheses and Crystal Structures of the Thiochloroantimonates(III) PPh4[Sb2SCl5] and (PPh4)2[Sb2SCl6]. CH3CN (PPh4)2Sb3Cl11, obtained from Sb2S3, PPh4Cl and HCl, reacts with Na2S4 in acetonitrile forming PPh4[Sb2SCl5]. From this and Na2S4 or from (PPh4)2[Sb2Cl8] and Na2S4 or K2S5 in acetonitrile (PPh4)2[Sb2SCl6] · CH3CN is obtained. Data obtained from the X-ray crystal structure determinations are: PPh4[Sb2SCl5], monoclinic, space group P21/c, a = 1002.9(3), b = 1705.6(5), c = 1653.7(5) pm, β = 99.12(2)°, Z = 4, R = 0.068 for 1283 reflextions; (PPh4)2[Sb2SCl6] · CH3CN, triclinic, space group P1 , a = 1287.8(7), b = 1343.6(9), c = 1696.5(9) pm, α = 69.82(5), β = 85.08(4), γ = 71.54(6)°, Z = 2, R = 0.059 for 6409 reflexions. In every anion two Sb atoms are linked via one sulfur and one ore two chloro atoms, respectively. Paris of [SbSCl5]? ions are associated via Sb …? S and Sb …? Cl contacts forming dimer units. In both compounds every Sb atom has a distorted octahedral coordination when the lone electron pair is included in the counting.  相似文献   

5.
Synthesis, Crystal Structure and Thermal Behaviour of Cs1,5[Re3I3Cl7,5(H2O)1,5] Dark brown tetrahedra of Cs1,5[Re3I3Cl7,5(H2O)1,5] crystallize on slow cooling of a hot saturated solution of ReI3 and CsCl in conc. hydrochlorid acid. The crystal structure (cubic, P4 3m (No. 215), a = 1241.06(3)pm, Vm = 287.8(1) cm3mol?1, Z = 4, R = 0.067, Rw = 0.037) is built up from isolated building units [Re3I3Cl7,5(H2O)1,5]1,5? with statistical distribution of chloride ions and water molecules in the in plane, terminal positions. Consistent with the result based on the X-ray analysis, the IR-spectrum shows one band for the OH stretching frequencies of the water molecules coordinated to the Re3 triangle at 3240 cm?1. The anions are arranged in the fashion of a cubic closest packing with the cesium ions occupying all octahedral and one quarter of the tetrahedral interstices. Temperature-dependent Guinier-Simon photographs in connection with DTA/TG investigations reveal that Cs1,5[Re3I3Cl7,5(H2O)1,5] releases water at 190°C accompanied with a structural transition and the dehydration product decomposes at 370°C to Cs2ReCl6?xIx, Re3I3+yCl6?y and rhenium metal.  相似文献   

6.
Rb6LiPr11Cl16[SeO3]12: A Chloride‐Derivatized Rubidium Lithium Praseodymium(III) Oxoselenate(IV) Transparent green square platelets with often truncated edges and corners of Rb6LiPr11Cl16[SeO3]12 were obtained by the reaction of elemental praseodymium, praseodymium(III,IV) oxide and selenium dioxide with an eutectic LiCl–RbCl flux at 500 °C in evacuated silica ampoules. A single crystal of the moisture and air insensitive compound was characterized by X‐ray diffraction single‐crystal structure analysis. Rb6LiPr11Cl16[SeO3]12 crystallizes tetragonally in the space group I4/mcm (no. 140; a = 1590.58(6) pm, c = 2478.97(9) pm, c/a = 1.559; Z = 4). The crystal structure is characterized by two types of layers parallel to the (001) plane following the sequence 121′2′1. Cl? anions form cubes around the Rb+ cations (Rb1 and Rb2; CN = 8; d(Rb+?Cl?) = 331 – 366 pm) within the first layer. One quarter of the possible places for Rb+ cations within this CsCl‐type kind of arrangement is not occupied, however the Cl? anions of these vacancies are connected to Pr3+ cations (Pr4) above and below instead, forming square antiprisms of [(Pr4)O4Cl4]9? units (d(Pr4?O) = 247–249 pm; d(Pr4?Cl) = 284–297 pm) that work as links between layer 1 and 2. Central cations of the second layer consist of Li+ and Pr3+. While the Li+ cations are surrounded by eight O2? anions (d(Li?O5) = 251 pm) in the shape of cubes again, the Pr3+ cations are likewisely coordinated by eight O2? anions as square antiprisms (for Pr1, d(Pr1?O2) = 242 pm) and by ten O2? anions (for Pr2 and Pr3), respectively. The latter form tetracapped trigonal antiprisms (Pr2, d(Pr2?O) = 251–253 pm and 4 × 262 pm) or bicapped distorted cubes (Pr3, d(Pr3?O) = 245–259 pm and 2 × 279 pm). The non‐binding electron pairs (“lone pairs”) at the two crystallographically different Ψ1‐tetrahedral [SeO3]2? anions (d(Se4+?O2?) = 169–173 pm) are directing towards the empty cavities between the layer‐connecting [(Pr4)O4Cl4]9? units.  相似文献   

7.
Thiochloroarsenates (III): Preparation, Vibrational Spectra, and Crystal Structures of PPh4[As2SCl5] and (PPh4)2[As2SCl6] · C2H4Cl2 PPh4[As2SCl5] can be obtained from As2S3 + PPh4Cl with HCl in CH2Cl2 or 1,2-C2H4Cl2. It reacts with a second mole of PPh4Cl to yield (PPh4)2[As2SCl6]. The latter also is formed by the reaction of As2S5 + 2 PPh4Cl with HCl, a second product being (PPh4)2[As2Cl8]. The i.r. and Raman spectra of the title compounds are reported. Their crystal structures were determined by X-ray diffraction. Crystal data: PPh4[As2SCl5], monoclinic, space group P21/n, a = 1175.8, b = 1508.0, c = 1593.4 pm, β = 96.22°, Z = 4; (PPh4)2[As2SCl6] · C2H4Cl2, triclinic, P1, a = 1166.3, b = 1188.2, c = 2044.6 pm, α = 95.47, β = 97.53, γ = 111.05°, Z = 2. Including the lone electron pairs, the coordination of the As atoms in the [As2SCl5] ion is distorted trigonal-bipyramidal with the S, one Cl atom, and an electron pair in equatorial positions; the two bipyramids around the two As atoms share a common edge. The As atoms in the [As2SCl6]2− ion have a distorted octahedral coordination, the two octahedra share a common face; the lone electron pairs are in the trans positions to the S atom.  相似文献   

8.
Synthesis and Crystal Structure of (PPh4)3[Re2NCl10] The rhenium(V) nitrido complex (PPh4)3[Re2NCl10] ( 1 ) is obtained from the reaction of (PPh4)[ReNCl4] with 1, 3‐dioxan‐(2‐ylmethyl)diphenyl phosphine in CH2Cl2/CH3CN in form of orange red crystals with the composition 1 ·2CH2Cl2 crystallizing in the triclinic space group P1¯ with a = 1210.7(2), b = 1232.5(1), c = 2756.3(5) pm, α = 99.68(1)°, β = 100.24(1)°, γ = 98.59(1)° and Z = 2. The crystal structure contains two symmetry independent, centrosymmetrical complex anions [Re2NCl10]3‐ with a symmetrical nitrido bridge Re=N=Re and distances Re(1) ‐ N(1) = 181.34(5) and Re(2) ‐ N(2) = 181.51(4) pm.  相似文献   

9.
Preparation and Crystal Structure of β-[SeCl3][MoOCl4] The reaction of Se4[MoOCl4] and Te4[MoOCl4] with SOCl2 as solvent at 150 °C and 80 °C yields [SeCl3][MoOCl4] and [TeCl3][MoOCl4] respectively within 3 to 6 days as yellow-brown, moisture-sensitive crystals. [TeCl3][MoOCl4] was obtained in the already known monoclinic form, while β-[SeCl3][MoOCl4] crystallizes in a new polymorphic triclinic form (P1¯, Z = 2, a = 752.7(2), b = 812.8(2), c = 956.9(3) pm, α = 92.55(3)°, β = 111.63(2)°, γ = 107.39(3)°). The structure contains centrosymmetric tetranuclear units ([SeCl3]2[Mo2O2Cl8]) which are analogous to the entities found in the structure of [SCl3][MoOCl4]. The packing of the molecules in β-[SeCl3][MoOCl4] and [SCl3][MoOCl4] is distinctely different.  相似文献   

10.
(PPh4)2[Cl2Re(N3S2)(μ‐NSN)(μ‐N≡ReCl3)]2 – a Rhenium(VII) Complex with a Nitrido, a Dinitridosulfato(II), and a Rhena‐3,5‐dithia‐2,4,6‐triazino Function The title compound has been prepared from PPh4[ReVIICl4(NSCl)2] with N(SiMe3)3 in dichloromethane solution to give red‐brown single crystals, which were suitable for a crystal structure determination. As a by‐product PPh4[ReNCl4] is formed. (PPh4)2[Cl2ReVII(N3S2)(μ‐NSN)(μ‐N≡ReVIICl3)]2 ( 1 ): Space group P21/c, Z = 2, lattice dimensions at –80 °C: a = 1280.8(2), b = 1017.5(1), c = 2467.8(3) pm, β = 95.04(1)°, R = 0.049. The complex anion of 1 consists of a planar ReN3S2‐heterocycle which is connected with the second rhenium atom by a μ‐nitrido bridge as well as by a μ‐dinitridosulfato(II) ligand to form a planar Re2(N)(NSN) six‐membered heterocycle. This [Cl2Re(N3S2)(μ‐NSN)(μ‐N≡ReCl3)] unit dimerizes via one of the N‐atoms of the (NSN)4– ligand to give a centrosymmetric Re2N2 four‐membered ring.  相似文献   

11.
Syntheses, Crystal Structures, and Triple Twinning of the Cluster Trimers Bi2[PtBi6Br12]3 and Bi2[PtBi6I12]3 Melting reactions of Bi with Pt and BiX3 (X = Br, I) yield shiny black, air insensitive crystals of the subhalides Bi2[PtBi6X12]. Bi2[PtBi6Br12]3 crystallizes in the monoclinic space group C2/m with lattice parameters a = 1617.6(2) pm, b = 1488.5(1) pm, c = 1752.4(2) pm, and β = 110.85(4)°. Bi2[PtBi6I12]3 adopts the triclinic space group with pseudo‐monoclinic lattice parameters a = 1711.2(2) pm, b = 1585.1(1) pm, c = 1865.7(2) pm, and α = 90°, β = 111.15(4)°, γ = 90°. The two homoeotypic compounds consist of cuboctahedral [Pt?IIBiII6X?I12]2? clusters that are concatenated into linear trimers by BiIII atoms. The ordered distribution of BiIII atoms destroys the inherent threefold rotation axes in the packing of cluster anions. As a consequence of the pseudosymmetry the crystals are triple twinned along [201]. Due to different orientations of the cluster trimers there are two BiII···X inter‐cluster bridges per BiII atom in Bi2[PtBi6Br12]3 but only one bridge in Bi2[PtBi6I12]3. The structure of the iodine compound can be deduced from the NaCl structure type, leaving 37 of 96 atomic positions unoccupied. The arrangement of the cuboctahedral clusters follows the motif of a body‐centered cubic packing.  相似文献   

12.
The Lanthanum Dodecahydro‐closo‐Dodecaborate Hydrate [La(H2O)9]2[B12H12]3·15 H2O and its Oxonium‐Chloride Derivative [La(H2O)9](H3O)Cl2[B12H12]·H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic La2O3 and after isothermic evaporation colourless, face‐rich single crystals of a water‐rich lanthanum(III) dodecahydro‐closo‐dodecaborate hydrate [La(H2O)9]2[B12H12]3·15 H2O are isolated. The compound crystallizes in the trigonal system with the centrosymmetric space group (a = 1189.95(2), c = 7313.27(9) pm, c/a = 6.146; Z = 6; measuring temperature: 100 K). The crystal structure of [La(H2O)9]2[B12H12]3·15 H2O can be characterized by two of each other independent, one into another posed motives of lattice components. The [B12H12]2− anions (d(B–B) = 177–179 pm; d(B–H) = 105–116 pm) are arranged according to the samarium structure, while the La3+ cations are arranged according to the copper structure. The lanthanum cations are coordinated in first sphere by nine oxygen atoms from water molecules in form of a threecapped trigonal prism (d(La–O) = 251–262 pm). A coordinative influence of the [B12H12]2− anions on La3+ has not been determined. Since “zeolitic” water of hydratation is also present, obviously the classical H–Oδ–···H–O‐hydrogen bonds play a significant role in the stabilization of the crystal structure. During the conversion of an aqueous solution of (H3O)2[B12H12] with lanthanum trichloride an anion‐mixed salt with the composition [La(H2O)9](H3O)Cl2[B12H12]·H2O is obtained. The compound crystallizes in the hexagonal system with the non‐centrosymmetric space group (a = 808.84(3), c = 2064.51(8) pm, c/a = 2.552; Z = 2; measuring temperature: 293 K). The crystal structure can be characterized as a layer‐like structure, in which [B12H12]2− anions and H3O+ cations alternate with layers of [La(H2O)9]3+ cations (d(La–O) = 252–260 pm) and Cl anions along [001]. The [B12H12]2− (d(B–B) = 176–179 pm; d(B–H) = 104–113 pm) and Cl anions exhibit no coordinative influence on La3+. Hydrogen bonds are formed between the H3O+ cations and [B12H12]2− anions, also between the water molecules of [La(H2O)9]3+ and Cl anions, which contribute to the stabilization of the crystal structure.  相似文献   

13.
Colourless octahedral single crystals of solvent‐free Ag2[B12Cl12] (cubic, Pa3¯; a = 1238.32(7) pm, Z = 4) are obtained by the metathesis reaction of Cs2[B12Cl12] with an aqueous solution of silver nitrate (AgNO3) and recrystallization of the crude product from water. The crystal structure is best described as a distorted anti‐CaF2‐type arrangement in which the quasi‐icosahedral [B12Cl12]2— anions (d(B—B) = d(B—Cl) = 177—180 pm) are arranged in a cubic closest‐packed fashion. The tetrahedral interstices are filled with Ag+ cations which are strongly displaced from their ideal positions. Thereby each silver atom gets coordinated by six chlorine atoms from the edges of three [B12Cl12]2— anions providing a distorted octahedral coordination sphere to the Ag+ cations (d(Ag—Cl) = 283—285 pm, CN = 6).  相似文献   

14.
Ce3Cl5[SiO4] and Ce3Cl6[PO4]: A Chloride‐Rich Chloride Silicate of Cerium as Compared to the Phosphate By reacting CeCl3 with CeO2, cerium and SiO2, or P2O5, respectively, in molar ratios of 5 : 3 : 1 : 3 or 8 : 3 : 1 : 2, respectively, in sealed evacuated silica tubes (7 d, 850 °C) colorless, rod‐shaped single crystals of Ce3Cl5[SiO4] (orthorhombic, Pnma; a = 1619.7(2), b = 415.26(4), 1423.6(1) pm; Z = 4) and Ce3Cl6[PO4] (hexagonal, P63/m; a = 1246.36(9), c = 406.93(4) pm; Z = 2) are obtained as products insensitive to air and water. Excess cerium trichloride as flux promotes crystal growth and can be rinsed off again with water after the reaction. The crystal structures are determined by discrete [SiO4]4– or [PO4]3– tetrahedra as isolated units. Both, the chloride silicate Ce3Cl5[SiO4] and the chloride phosphate Ce3Cl6[PO4], exhibit structural similarities to CeCl3 (UCl3 type), when four or three Cl anions are each substituted formally by one [SiO4]4– or [PO4]3– unit, respectively, in the tripled formula (Ce3Cl9). The coordination number for Ce3+ is thus raised from nine in CeCl3 to ten in Ce3Cl5[SiO4] and Ce3Cl6[PO4], along with a drastic reduction of the molar volume with the transition from Ce3Cl9 (Vm = 186.17 cm3/mol) to Ce3Cl5[SiO4] (Vm = 144.15 cm3/mol) and Ce3Cl6[PO4] (Vm = 164.84 cm3/mol). The polyhedra of coordination around Ce3+ can be described as quadruple‐capped trigonal prisms, which in addition to seven Cl anions each also show another three oxygen atoms of two ortho‐silicate or ortho‐phosphate tetrahedra, respectively.  相似文献   

15.
Selenium Polycations Stabilized by Polymeric Chlorobismuthate Anions: Syntheses and Crystal Structures of Se4[Bi4Cl14] and Se10[Bi5Cl17] Reactions of selenium with selenium(IV) chloride and bismuth(III) chloride in sealed evacuated glass ampoules at temperatures between 110 and 155 °C yield a series of compounds which are composed of discrete selenium polycations and polymeric chlorobismutate anions. Besides the already known Se8[Bi4Cl14] two new compounds have been identified by crystal structure analyses as Se4[Bi4Cl14] (tetragonal, P4/n, a = 1089.1(2) pm, c = 993.7(2) pm, Z = 2) and Se10[Bi5Cl17] (monoclinic, P21/c, a = 1079.24(8) pm, b = 2062.9(2) pm, c = 1676.1(2) pm, β = 90.87(1)°, Z = 4). Se4[Bi4Cl14] was obtained as red transparent platelike crystals and is the first example of a compound with (chalcogen4)2+ ions of exact square‐planar symmetry and molecular point group D4h in the solid state. The cations are surrounded by layers of two‐dimensional polymeric anions [Bi4Cl14]2–. Se10[Bi5Cl17] forms dark grey crystals with a reddish luster. The structure contains the known bicyclic polycation Se102+ which is disordered over two positions and the first three‐dimensional polymeric chlorobismutate anion [Bi5Cl17]2–. The different BiClx polyhedra are linked by sharing common vertices, edges, and faces.  相似文献   

16.
During the reaction of Na2[WO4] with YF3 purposed to yield fluoride‐derivatized yttrium oxotungstates(VI), colourless platelet‐shaped single crystals of Na3F[WO4] emerged as main product. The title compound crystallizes orthorhombically in the space group Pnma (a = 559.59(5), b = 751.02(7), c = 1285.98(9) pm) with four formula units per unit cell. Besides isolated ortho‐oxotungstate units [WO4]2? (d(W–O) = 176–178 pm) the crystal structure contains two crystallographically independent Na+ cations which are both octahedrally coordinated by four oxygen atoms and two fluoride anions. The F? anions are surrounded by six sodium cations (d(F–Na) = 224–242 pm) also in an octahedral fashion. These octahedra built up chains along [100] by sharing trans‐oriented faces according to , which are stacked according to a hexagonal closest rod‐packing. The cationic strands are surrounded, interconnected and charge‐balanced by isolated [WO4]2? tetrahedra with almost ideal shape and every O2? ligand is terminally coordinated by three Na+ cations.  相似文献   

17.
On Thallium(I)-oxochloromolybdates: Synthesis and Crystal Structures of Tl[MoOCl4(NCCH3)], Tl[Mo2O2Cl7], and Tl2[Mo4O4Cl14] and the Structure of Tl2[MoCl6] Black crystals of Tl2[MoCl6] are formed in the reaction of TlCl with MoOCl3 in a sealed evacuated glass ampoule at 350 °C. The crystal structure analysis shows that Tl2[MoCl6] (cubic, Fm m, a = 986.35(7) pm) adopts the K2[PtCl6] structure with a Mo–Cl bond length of 236.6 pm. Tl[MoOCl4(NCCH3)] was obtained by the reaction of TlCl with MoOCl3 in acetonitrile in form of yellow, moisture sensitive crystals. The structure (orthorhombic, Cmcm, a = 746.0(1), b = 1463.8(3), c = 857.3(2) pm) is built of Tl+ cations and octahedral [MoOCl4(NCCH3)] anions in which the acetonitrile ligand is bound in trans position to the oxygen. The reaction of TlCl and MoOCl3 in dichloromethane yields Tl[Mo2O2Cl7] and Tl2[Mo4O4Cl14] as green moisture sensitive crystals. The structure of Tl[Mo2O2Cl7] (orthorhombic, Pmmn, a = 694.3(1), b = 951.9(2), c = 904.7(1) pm) consists of Tl+ cations and dinuclear [Mo2O2Cl7] anions, with two equidistant chlorine bridges of 248.2 and one longer chlorine bridge of 265.7 pm. The oxygen atoms are located in the trans positions of the longer chloro bridge. The structure of Tl2[Mo4O4Cl14] (triclinic, P1¯, a = 692.8(1), b = 919.6(1), c = 998.9(1) pm, α = 104.94(1)°, β = 90.31(1)°, γ = 108.14(1)°) is build of Tl+ cations and [Mo4O4Cl14]2– anions which form tetramers of distorted octahedral, edgesharing (MoOCl5) units with chlorine atoms in the bridging positions. The oxygen atoms are located in the trans positions of the longest chlorine bridges.  相似文献   

18.
Reaction of UV and UVI Compounds with SOCl2 UO3, UO2Cl2, UCl6, and UCl5 reacted with OSCl2 yield always UCl5 · SCl2, [SCl3]+ [UCl6]? or a mixture of these compounds, but not an adduct UCl5 · OSCl2. An X-ray study was carried out with single crystals of [SCl3]+[UCl6]?. It crystallizes in the orthorhombic space group P212121 with the lattice constants a = 1066.8, b = 1071.2, c = 1133.3 pm and with Z = 4, containing isolated pyramidal SCl3+ (rSCl = 196.2 ± 1.1 pm ?SCl2 = 102.34 ± 1.13°) and octahedral UCl6? ions (rUCl = 251.1 ± 2.6 pm).  相似文献   

19.
Novel Routes to the Synthesis of Thiohalogeno- and Cyclothioarsenates(III). Crystal Structures of PPh4[As2SBr6] · CH3CN and PPh4[SAsS5] By reactions of (PPh4)2[As2Cl8] and (PPh4)2[As2Br8] with Na2S4 in acetonitrile (PPh4)2[As2SCl6] · CH3CN and (PPh4)2[As2SBr6] · CH3CN were obtained, respectively. Using K2S5, PPh4[As2SCl5] and PPh4[SAsS5] were the products. The latter can also be obtained from PPh4[As2SCl5] and Na2S4, while PPh4[As3S3Br4] is formed from PPh4[As2SBr5] with K2S5. Two X-ray crystal structure determinations were performed. PPh4[As2SBr6] · CH3CN: triclinic, P1 , Z = 2, a = 1200.4(7), b = 1507.3(6), c = 1594.4(8) pm, α = 81.59(2), β = 78.22(3), γ = 80.58(2)°, R = 0.096 for 2298 observed reflexions. The structure contains [As2SBr6]2? -ions in which the two Sb atoms are joined via one S and two Br atoms. PPh4[SAsS5]: triclinic, P1 , Z = 2, a = 1133.9(4), b = 1142.5(4), c = 1186.9(5) pm, α = 102.77(4), β = 107.74(3), γ = 106.65(3)°, R = 0.043 für 2677 reflexions. In the [SAsS5]? -ion an AsS5 ring in the chair conformation is present.  相似文献   

20.
Bi53+ Polycations in Ordered and Plastic Crystals of Bi5[AlI4]3 and Bi5[AlBr4]3 Dark‐red air‐sensitive crystals of pentabismuth‐tris(tetrabromoaluminate) Bi5[AlBr4]3 and black crystals of Bi5[AlI4]3 have been crystallized from melts of Bi, BiX3 and AlX3 (X = Br, I). X‐ray diffraction on a single crystal of Bi5[AlI4]3 (T = 293(2) K; space group Pnma; a = 2143.6(3) pm, b = 1889.1(1) pm, c = 811.74(5) pm) revealed an ordered packing of Bi53+ trigonal bipyramids and [AlI4]? tetrahedra that corresponds to the PuBr3 structure type. Contrary to the so far known Bi53+ polycations with accurate D3h symmetry, the bismuth cluster found in Bi5[AlI4]3 holds only Cs symmetry. The room temperature structure of the tetrabromoaluminate Bi5[AlBr4]3, which is related to the AuCu3 type, shows a dynamic disorder of the Bi53+ polycations (T = 293(2) K; space group ; a = 1766.2(3) pm). Slight cooling induces the transition into an ordered rhombohedral phase isostructural to Bi5[AlCl4]3 (T = 260(2) K; space group a = 1241.5(8) pm, c = 3041(2) pm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号