首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the three‐dimensional elliptic grid generation. The two‐dimensional approach for the control functions obtained by modifying the Thomas–Middlecoff method is applied on the planes perpendicular to the main flow direction co‐ordinate, which is assumed to be the function of only one corresponding co‐ordinate in the computational domain. The grid orthogonality is improved by about 40 per cent compared with that of the algebraic initial grid. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
In the present investigation, a Fourier analysis is used to study the phase and group speeds of a linearized, two‐dimensional shallow water equations, in a non‐orthogonal boundary‐fitted co‐ordinate system. The phase and group speeds for the spatially discretized equations, using the second‐order scheme in an Arakawa C grid, are calculated for grids with varying degrees of non‐orthogonality and compared with those obtained from the continuous case. The spatially discrete system is seen to be slightly dispersive, with the degree of dispersivity increasing with an decrease in the grid non‐orthogonality angle or decrease in grid resolution and this is in agreement with the conclusions reached by Sankaranarayanan and Spaulding (J. Comput. Phys., 2003; 184 : 299–320). The stability condition for the non‐orthogonal case is satisfied even when the grid non‐orthogonality angle, is as low as 30° for the Crank Nicolson and three‐time level schemes. A two‐dimensional wave deformation analysis, based on complex propagation factor developed by Leendertse (Report RM‐5294‐PR, The Rand Corp., Santa Monica, CA, 1967), is used to estimate the amplitude and phase errors of the two‐time level Crank–Nicolson scheme. There is no dissipation in the amplitude of the solution. However, the phase error is found to increase, as the grid angle decreases for a constant Courant number, and increases as Courant number increases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
In developing a 3D or laterally averaged 2D model for free‐surface flows using the finite difference method, the water depth is generally discretized either with the z‐co‐ordinate (z‐levels) or a transformed co‐ordinate (e.g. the so‐called σ‐co‐ordinate or σ‐levels). In a z‐level model, the water depth is discretized without any transformation, while in a σ‐level model, the water depth is discretized after a so‐called σ‐transformation that converts the water column to a unit, so that the free surface will be 0 (or 1) and the bottom will be ‐1 (or 0) in the stretched co‐ordinate system. Both discretization methods have their own advantages and drawbacks. It is generally not conclusive that one discretization method always works better than the other. The biggest problem for the z‐level model normally stems from the fact that it cannot fit the topography properly, while a σ‐level model does not have this kind of a topography‐fitting problem. To solve the topography‐fitting problem in a laterally averaged, 2D model using z‐levels, a piecewise linear bottom is proposed in this paper. Since the resulting computational cells are not necessarily rectangular looking at the xz plane, flux‐based finite difference equations are used in the model to solve the governing equations. In addition to the piecewise linear bottom, the model can also be run with full cells or partial cells (both full cell and partial cell options yield a staircase bottom that does not fit the real bottom topography). Two frictionless wave cases were chosen to evaluate the responses of the model to different treatments of the topography. One wave case is a boundary value problem, while the other is an initial value problem. To verify that the piecewise linear bottom does not cause increased diffusions for areas with steep bottom slopes, a barotropic case in a symmetric triangular basin was tested. The model was also applied to a real estuary using various topography treatments. The model results demonstrate that fitting the topography is important for the initial value problem. For the boundary value problem, topography‐fitting may not be very critical if the vertical spacing is appropriate. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A multiblock/multilevel algorithm with local refinement for general two‐ and three‐dimensional fluid flow is presented. The patched‐based local refinement procedure is presented in detail and algorithmic implementations are also presented. The multiblock implementation is essentially block‐unstructured, i.e. each block having its own local curvilinear co‐ordinate system. Refined grid patches can be put anywhere in the computational domain and can extend across block boundaries. To simplify the implementation, while still maintaining sufficient generality, the refinement is restricted to a refinement of the grid successively halving the grid size within a selected patch. The multiblock approach is implemented within the framework of the well‐known SIMPLE solution strategy. Computational experiments showing the effect of using the multilevel solution procedure are presented for a sample elliptic problem and a few benchmark problems of computational fluid dynamics (CFD). Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
An analysis is given for the accuracy and stability of some perturbation‐based time‐domain boundary element models (BEMs) with B‐spline basis functions, solving hydrodynamic free‐surface problems, including forward speed effects. The spatial convergence rate is found as a function of the order of the B‐spline basis. It is shown that for all the models examined the mixed implicit–explicit Euler time integration scheme is correct to second order. Stability diagrams are found for models based on B‐splines of orders third through to sixth for two different time integration schemes. The stability analysis can be regarded as an extension of the analysis by Vada and Nakos [Vada T, Nakos DE. Time marching schemes for ship motion simulations. In Proceedings of the 8th International Workshop on Water Waves and Floating Bodies, St. John's, Newfoundland, Canada, 1993; 155–158] to include B‐splines of orders higher than three (piecewise quadratic polynomials) and to include finite water depth and a current at an oblique angle to the model grid. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
A moment‐of‐fluid method is presented for computing solutions to incompressible multiphase flows in which the number of materials can be greater than two. In this work, the multimaterial moment‐of‐fluid interface representation technique is applied to simulating surface tension effects at points where three materials meet. The advection terms are solved using a directionally split cell integrated semi‐Lagrangian algorithm, and the projection method is used to evaluate the pressure gradient force term. The underlying computational grid is a dynamic block‐structured adaptive grid. The new method is applied to multiphase problems illustrating contact‐line dynamics, triple junctions, and encapsulation in order to demonstrate its capabilities. Examples are given in two‐dimensional, three‐dimensional axisymmetric (RZ), and three‐dimensional (XYZ) coordinate systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Smagorinsky‐based models are assessed in a turbulent channel flow simulation at Reb=2800 and Reb=12500. The Navier–Stokes equations are solved with three different grid resolutions by using a co‐located finite‐volume method. Computations are repeated with Smagorinsky‐based subgrid‐scale models. A traditional Smagorinsky model is implemented with a van Driest damping function. A dynamic model assumes a similarity of the subgrid and the subtest Reynolds stresses and an explicit filtering operation is required. A top‐hat test filter is implemented with a trapezoidal and a Simpson rule. At the low Reynolds number computation none of the tested models improves the results at any grid level compared to the calculations with no model. The effect of the subgrid‐scale model is reduced as the grid is refined. The numerical implementation of the test filter influences on the result. At the higher Reynolds number the subgrid‐scale models stabilize the computation. An analysis of an accurately resolved flow field reveals that the discretization error overwhelms the subgrid term at Reb=2800 in the most part of the computational domain. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The flow of an electrically conducting incompressible viscous fluid in a plane channel with smooth expansion in the presence of a uniform transverse magnetic field has been analysed. A solution technique for the governing magnetohydrodynamic equations in primitive variable formulation has been developed. A co‐ordinate transformation has been employed to map the infinite irregular domain into a finite regular computational domain. The governing equations are discretized using finite‐difference approximations in staggered grid. Pressure Poisson equation and pressure correction formulae are derived and solved numerically. It is found that with increase in the magnetic field, the size of the flow separation zone diminishes and for sufficiently large magnetic field, the separation zone disappears completely. The peak u‐velocity decreases with increase in the magnetic field. It is also found that the asymmetric flow in a symmetric geometry, which occurs at moderate Reynolds numbers, becomes symmetric with sufficient increase in the transverse magnetic field. Thus, a transverse magnetic field of suitable strength has a stabilizing effect in controlling flow separation, as also in delaying the transition to turbulence. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a numerical method that couples the incompressible Navier–Stokes equations with the level set method in a curvilinear co‐ordinate system for study of free surface flows. The finite volume method is used to discretize the governing equations on a non‐staggered grid with a four‐step fractional step method. The free surface flow problem is converted into a two‐phase flow system on a fixed grid in which the free surface is implicitly captured by the zero level set. We compare different numerical schemes for advection of the level set function in a generalized curvilinear format, including the third order quadratic upwind interpolation for convective kinematics (QUICK) scheme, and the second and third order essentially non‐oscillatory (ENO) schemes. The level set equations of evolution and reinitialization are validated with benchmark cases, e.g. a stationary circle, a rotating slotted disk and stretching of a circular fluid element. The coupled system is then applied to a travelling solitary wave, and two‐ and three‐dimensional dam breaking problems. Some interesting free surface phenomena are revealed by the computational results, such as, the large free surface vortices, air entrapment and splashing of the water surge front. The computational results are in excellent agreement with theoretical predictions and experimental data, where they are available. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
The stability of thermo‐acoustic pressure oscillations in a lean premixed methane‐fired generic gas turbine combustor is investigated. A key element in predicting the acoustically unstable operating conditions of the combustor is the flame transfer function. This function represents the dynamic relationship between a fluctuation in the combustor inlet conditions and the flame's acoustic response. A transient numerical experiment involving spectral analysis in computational fluid dynamics (CFD) is usually conducted to predict the flame transfer function. An important drawback of this spectral method application to numerical simulations is the required computational effort. A much faster and more accurate method to calculate the transfer function is derived in this paper by using a most important basic assumption: the fluctuations must be small enough for the system to behave linear. This alternative method, which is called the linear coefficient method, uses a linear representation of the unsteady equations describing the CFD problem. This linearization is applied around a steady‐state solution of the problem, where it can consequently describe the dynamics of the system. Finally, the flame transfer function can be calculated from this linear representation. The advantage of this approach is that one only needs a steady‐state solution and linearization of the unsteady equations for calculating a dynamic transfer function, i.e. no time‐consuming transient simulations are necessary anymore. Nevertheless, as a consequence of the large number of degrees of freedom in a CFD problem, an extra order reduction step needs to be performed prior to calculating the transfer function from the linear representation. Still, the linear coefficient method shows a significant gain in both speed and accuracy when calculating the transfer function from the linear representation as compared to a spectral analysis‐based calculation. Hence, this method gives a major improvement to the application of the flame transfer function as a thermo‐acoustic design tool. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The purpose of the present paper is to evaluate very‐high‐order upwind schemes for the direct numerical simulation (DNS ) of compressible wall‐turbulence. We study upwind‐biased (UW ) and weighted essentially nonoscillatory (WENO ) schemes of increasingly higher order‐of‐accuracy (J. Comp. Phys. 2000; 160 :405–452), extended up to WENO 17 (AIAA Paper 2009‐1612, 2009). Analysis of the advection–diffusion equation, both as Δx→0 (consistency), and for fixed finite cell‐Reynolds‐number ReΔx (grid‐resolution), indicates that the very‐high‐order upwind schemes have satisfactory resolution in terms of points‐per‐wavelength (PPW ). Computational results for compressible channel flow (Re∈[180, 230]; M?CL ∈[0.35, 1.5]) are examined to assess the influence of the spatial order of accuracy and the computational grid‐resolution on predicted turbulence statistics, by comparison with existing compressible and incompressible DNS databases. Despite the use of baseline Ot2) time‐integration and Ox2) discretization of the viscous terms, comparative studies of various orders‐of‐accuracy for the convective terms demonstrate that very‐high‐order upwind schemes can reproduce all the DNS details obtained by pseudospectral schemes, on computational grids of only slightly higher density. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Although it is common for automated image processing techniques to claim subpixel accuracy in the identification of particles, or centroids of displacements of groups of particles, additional errors are inevitably introduced when and if these data are reinterpolated back onto a grid mesh whose nodes lie at different locations from the original data. Moreover, these errors can be large compared to the errors introduced in the original image processing step.Two different techniques, convolution with an adaptive Gaussian window (AGW), and a two-dimensional thin-shell spline (STS), have been compared and contrasted for interpolating irregularly spaced data onto a regular grid. Both techniques are global interpolators; the Gaussian kernel applies an ad hoc choice of smooth function, while the thin-shell spline minimises a global functional proportional to the Laplacian of the velocity field. In this way, the smoothness constraint on the spline coefficients may be thought of as akin to a viscous smoothing of the fluid flow.Performance curves are given, enabling the investigator to make an informed choice of interpolating routine and grid interpolation parameters to minimise the interpolation errors, given various external constraints. Some illustrative example applications on real experimental data are described. In general, the importance of matching the interpolation technique to the characteristics of the original data is stressed. It is also pointed out that a correct interpretation of grid interpolated data must be based on a basic knowledge of the performance characteristics of that interpolator. Finally, recommendations are made concerning the development of surface spline techniques for problems involving large numbers of data points.  相似文献   

13.
A vertically integrated non‐linear dispersive wave model is expressed in non‐orthogonal curvilinear co‐ordinate system for simulating shallow or deep water wave motions in regions of arbitrary geometry. Both dependent and independent variables are transformed so that an irregular physical domain is converted into a rectangular computational domain with contravariant velocities. Thus, the wall condition for enclosures surrounding a typical physical domain, such as a channel, port or harbor, is satisfied accurately and easily. The numerical scheme is based on staggered grid finite‐difference approximations, which result in implicit formulations for the momentum equations and semi‐explicit formulation for the continuity equation. Test cases of linear wave propagation in converging, diverging and circular channels are performed to check the reliability of model simulations against the analytical solutions. Cnoidal waves of different steepness values in a circular channel are also considered as examples to non‐linear wave propagation within curved walls. In closing, remarks concerning versatility and practical uses of the numerical model are made. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
A numerical model has been developed for simulating density‐stratified flow in domains with irregular but simple topography. The model was designed for simulating strong interactions between internal gravity waves and topography, e.g. exchange flows in contracting channels, tidally or convectively driven flow over two‐dimensional sills or waves propagating onto a shoaling bed. The model is based on the non‐hydrostatic, Boussinesq equations of motion for a continuously stratified fluid in a rotating frame, subject to user‐configurable boundary conditions. An orthogonal boundary fitting co‐ordinate system is used for the numerical computations, which rely on a fourth‐order compact differentiation scheme, a third‐order explicit time stepping and a multi‐grid based pressure projection algorithm. The numerical techniques are described and a suite of validation studies are presented. The validation studies include a pointwise comparison of numerical simulations with both analytical solutions and laboratory measurements of non‐linear solitary wave propagation. Simulation results for flows lacking analytical or laboratory data are analysed a posteriori to demonstrate satisfaction of the potential energy balance. Computational results are compared with two‐layer hydraulic predictions in the case of exchange flow through a contracting channel. Finally, a simulation of circulation driven by spatially non‐uniform surface buoyancy flux in an irregular basin is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
A three‐dimensional, baroclinic and rotational benchmark for hydrostatic coastal ocean models is suggested. The computational domain is a quadratic basin 200×200 km horizontally and 200 m deep. The lateral boundaries are closed. Solutions to the problems are estimated with two different sigma co‐ordinate models, both for the diagnostic and the prognostic case. Grid‐ and time‐converged results are presented. For the transports, convergence within two significant digits is reported. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Tsunamis generated by earthquakes involve physical processes of different temporal and spatial scales that extend across the ocean to the shore. This paper presents a shock‐capturing dispersive wave model in the spherical coordinate system for basin‐wide evolution and coastal run‐up of tsunamis and discusses the implementation of a two‐way grid‐nesting scheme to describe the wave dynamics at resolution compatible to the physical processes. The depth‐integrated model describes dispersive waves through the non‐hydrostatic pressure and vertical velocity, which also account for tsunami generation from dynamic seafloor deformation. The semi‐implicit, finite difference model captures flow discontinuities associated with bores or hydraulic jumps through the momentum‐conserved advection scheme with an upwind flux approximation. The two‐way grid‐nesting scheme utilizes the Dirichlet condition of the non‐hydrostatic pressure and both the horizontal velocity and surface elevation at the inter‐grid boundary to ensure propagation of dispersive waves and discontinuities across computational grids of different resolution. The inter‐grid boundary can adapt to bathymetric features to model nearshore wave transformation processes at optimal resolution and computational efficiency. A coordinate transformation enables application of the model to small geographic regions or laboratory experiments with a Cartesian grid. A depth‐dependent Gaussian function smoothes localized bottom features in relation to the water depth while retaining the bathymetry important for modeling of tsunami transformation and run‐up. Numerical experiments of solitary wave propagation and N‐wave run‐up verify the implementation of the grid‐nesting scheme. The 2009 Samoa Tsunami provides a case study to confirm the validity and effectiveness of the modeling approach for tsunami research and impact assessment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The scaled boundary finite‐element method is a novel semi‐analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. The method works by weakening the governing differential equations in one co‐ordinate direction through the introduction of shape functions, then solving the weakened equations analytically in the other (radial) co‐ordinate direction. These co‐ordinate directions are defined by the geometry of the domain and a scaling centre. The method can be employed for both bounded and unbounded domains. This paper applies the method to problems of potential flow around streamlined and bluff obstacles in an infinite domain. The method is derived using a weighted residual approach and extended to include the necessary velocity boundary conditions at infinity. The ability of the method to model unbounded problems is demonstrated, together with its ability to model singular points in the near field in the case of bluff obstacles. Flow fields around circular and square cylinders are computed, graphically illustrating the accuracy of the technique, and two further practical examples are also presented. Comparisons are made with boundary element and finite difference solutions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The foundations of a new discontinuous Galerkin method for simulating compressible viscous flows with shocks on standard unstructured grids are presented in this paper. The new method is based on a discontinuous Galerkin formulation both for the advective and the diffusive contributions. High‐order accuracy is achieved by using a recently developed hierarchical spectral basis. This basis is formed by combining Jacobi polynomials of high‐order weights written in a new co‐ordinate system. It retains a tensor‐product property, and provides accurate numerical quadrature. The formulation is conservative, and monotonicity is enforced by appropriately lowering the basis order and performing h‐refinement around discontinuities. Convergence results are shown for analytical two‐ and three‐dimensional solutions of diffusion and Navier–Stokes equations that demonstrate exponential convergence of the new method, even for highly distorted elements. Flow simulations for subsonic, transonic and supersonic flows are also presented that demonstrate discretization flexibility using hp‐type refinement. Unlike other high‐order methods, the new method uses standard finite volume grids consisting of arbitrary triangulizations and tetrahedrizations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
An empirical investigation is made of AMG solver performance for the fully coupled set of Navier–Stokes equations. The investigation focuses on two different FV discretizations for the standard driven cavity test problem. One is a collocated vertex‐based discretization; the other is a cell‐centred staggered‐grid discretization. Both employ otherwise identical orthogonal Cartesian meshes. It is found that if mixed‐order interpolation is used in the construction of the Galerkin coarse‐grid approximation (CGA), a close‐to‐optimum mesh‐independent scaling of the AMG convergence is observed with similar convergence rates for both discretizations. If, on the other hand, an equal‐order interpolation is used, convergence rates are mesh‐dependent but the scaling differs in each case. For the collocated‐grid case, it depends both on the mesh size, h (or bandwidth Qh?1) and on the total number of grids, G, whereas for the staggered‐grid case it depends only on Q. Comparing the two characteristics reveals that the Q‐dependent parts are very similar; it is only in the G‐dependent convergence for the collocated‐grid case that they differ. This takes the form of stepped reductions in the AMG convergence rate (implying step reductions in the quality of the Galerkin CGA that correlate exactly with step increases in G). These findings reinforce previous evidence that, for optimum mesh‐independent performance, mixed‐order interpolations should be used in forming Galerkin CGAs for coupled Navier–Stokes problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Two‐dimensional flows past a stationary circular cylinder near a plane boundary are numerically simulated using an immersed interface method with second‐order accuracy. Instead of a fixed wall, a moving wall with no‐slip boundary is considered to avoid the complex involvement of the boundary layer and to focus only on the shear‐free wall proximity effects for investigating the force dynamics and flow fields. To analyze the convergence and accuracy of our implementation, numerical studies have been first performed on a simple test problem of rotational flow, where the second order of convergence is confirmed through numerical experiments and an optimal range of relative grid‐match ratio of Lagrangian to Eulerian grid sizes has been recommended. By comparing the force quantities and the Strouhal number, the accuracy of this method has been demonstrated on the flow past a stationary isolated cylinder. The cylinder is then put in proximity to the wall to investigate the shear‐free wall proximity effects in the low Reynolds number regime (20≤Re≤200). The gap ratio, e/D, where e denotes the gap between the cylinder and the moving wall and D denotes the diameter of the cylinder, is taken from 0.10 to 2.00 to determine the critical gap ratio, (e/D)critical, for the alternate vortex shedding, where the fluid forces, flow fields and the streamwise velocity profiles are studied. One of the key findings is that the (e/D)critical for the alternate vortex shedding decreases as the Reynolds number increases. We also find that, in this low Reynolds number regime, the mean drag coefficient increases and peaks at e/D = 0.5 with the increase of e/D and keeps decreasing gently from e/D = 0.5 to e/D = 2.0, while the mean lift coefficient decreases monotonically with the increase of e/D. New correlations are then proposed for computing force coefficients as a function of Re and e/D for a cylinder in the vicinity of a moving plane wall. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号