首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isotactic 6-armed star-shaped poly(vinyl alcohol) (PVA) with a narrow molecular weight distribution was successfully prepared by the living cationic polymerization of 6-armed star-shaped poly(tert-butyl vinyl ether) (PTBVE) and subsequent acidic ether cleavage. The PTBVE was synthesized using hexa(chloromethyl) melamine (HCMM) as a hexafunctional initiator and ZnI2 or ZnCl2 as an activator in toluene/MC (1/1 v/v) at −70 °C. A better living stability of PTBVE was obtained in the ZnCl2 activator system. The number average molecular weight and the polydispersity index of the 6-armed star-shaped PTBVE polymerized with ZnCl2 at −70 °C for 24 h were 156,000 g/mol and 1.47, respectively. The fraction of the mm sequence of the resulting PVA was 52%.  相似文献   

2.
The living radical polymerization of methyl methacrylate and styrene was successfully carried out with diethyl 2,3‐dicyano‐2,3‐diphenylsuccinate (DCDPS)/ferric tri(diethyldithiocarbamate) as a novel reverse atom transfer radical polymerization initiation system in which DCDPS was a hexa‐substituted ethane‐type thermal iniferter, DC was a diethyldithiocarbamate group, and no additional ligands such as nitrogen‐ or phosphine‐based compounds were required. The bulk polymerization of methyl methacrylate was carried out at 95 °C, and that of styrene was carried out at 120 °C. Poly(methyl methacrylate) and polystyrene (PSt) with high molecular weights and quite narrow molecular weight distributions (as low as 1.09 for PSt) were obtained. 1H NMR spectroscopy revealed the presence of an α‐(carbethoxycyanophenyl)methyl group from the initiator and an ω‐DC group from the catalyst in the obtained polymers. Various chain‐extension reactions under UV light or thermal treatments were successfully conducted to prove the presence and efficient reinitiating of the ω‐DC group. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3464–3473, 2001  相似文献   

3.
A monomode microwave reactor was used for the synthesis of designed star‐shaped polymers, which were based on dipentaerythritol with six crystallizable arms of poly(ε‐caprolactone)‐b‐poly(L ‐lactide) (PCL‐b‐PLLA) copolymer via a two‐step ring‐opening polymerization (ROP). The effects of irradiation conditions on the molecular weight were studied. Microwave heating accelerated the ROP of CL and LLA, compared with the conventional heating method. The resultant hexa‐armed polymers were fully characterized by means of FTIR, 1H NMR spectrum, and GPC. The investigation of thermal properties and crystalline behaviors indicated that the crystalline behaviors of polymers were largely depended on the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
A series of novel multi‐armed (di‐, tri‐ and tetra‐armed) mesogen‐jacketed liquid crystal polymers (MJLCPs) were synthesized by atom transfer radical polymerization (ATRP) of {2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene}(MPCS) using di‐, tri‐ and tetrafunctional initiator, respectively. The results show that the number average molecular weight (Mn,GPC) was increased versus monomer conversion, and the polydispersities were quite narrow (<1.19), which is the characteristic of controlled polymerization. The chemical structures of these multi‐armed mesogen‐jacketed liquid crystal polymers were confirmed by 1H NMR. The liquid crystalline behavior of these multi‐armed MJLCPs with arms ranging from two to four was studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide‐angle X‐ray diffraction (WAXD). It was found that liquid crystalline phases appeared simply when the number molecular weights (Mn,GPC) of these multi‐armed MJLCPs was higher than a certain critical values, that is, Mn,GPC > 1.87 × 104 g/mol, 1.84 × 104 g/mol, 2.69 × 104 and 3.68 × 104 g/mol, which were initiated by coil difunctional initiator, hard difunctional initiator, trifunctional initiator and tetrafunctional initiator, respectively. All the liquid crystalline phase was found to be stable up to the decomposition temperature of these multi‐armed MJLCPs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3232–3244, 2005  相似文献   

5.
Hyperbranched polymethacrylates were prepared by means of oxyanionic vinyl polymerization of commercially available monomers, including hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methacrylate (PEG‐MA). Hyperbranched polymethacrylates with high molecular weight were obtained with the complex of potassium hydride and 18‐crown‐6 as the initiator. The effect of 18‐crown‐6 is very important, and only oligomer can be obtained in the polymerization without 18‐crown‐6. The molecular structure of the hyperbranched polymers was confirmed with 1H NMR and 13C NMR spectra. The ratio of initiator to monomer significantly affects the architecture of the resultant polymers. When the ratio of initiator to monomer equals 1 in the oxyanionic vinyl polymerization of HEMA, the degree of branching of the resulting polymer was calculated to be around 0.49. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3502–3509, 2005  相似文献   

6.
The synthesis of two vinyl‐terminated side‐chain liquid‐crystalline polyethers containing benzylideneaniline moieties as mesogenic cores was approached in two different ways: by chemically modifying poly(epichlorohydrin) with suitable mesogenic acids or by polymerizing analogous glycidyl ester or glycidyl ether derivatives. In all the conditions tested, the first approach led to materials in which the imine group was hydrolyzed. The second approach led to the desired polymers PG2a and PG2b , but only from the glycidyl ether derivatives and when the initiator was the system that combined polyiminophosphazene base t‐Bu‐P4 and 3,5‐di‐t‐butylphenol. These polymers were chemically characterized by IR and 1H and 13C NMR spectroscopies. The estimated degrees of polymerization ranged from 30 to 36. The liquid crystalline behavior of the synthesized polymers was studied by differential scanning calorimetry, polarized optical microscopy (POM) and X‐ray diffraction. Both polymers behave like liquid crystals and exhibited a single mesophase, which was recognized as a smectic C mesophase, probably with a bilayer arrangement, i.e., a smectic C2 mesophase. The crosslinking of both polymers was performed with dicumyl peroxide as initiator, which led to liquid crystalline thermosets. POM and X‐ray diffraction confirmed that the mesophase organization mantained on the crosslinked materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1877–1889, 2006  相似文献   

7.
myo‐Inositol, a naturally occurring cyclic hexaol, was converted to 2,4,6‐tri‐O‐allyl‐myo‐inositol and 1,2,3,4,5,6‐hexa‐O‐allyl‐myo‐inositol. Polyaddition of the former product, a tri(allyl ether) bearing three hydroxyl groups, with dithiols yielded the corresponding networked polymers. Their glass transition temperatures (Tgs) were higher than those of networked polymers formed by the polyaddition of 1,3,5‐tri‐O‐methyl‐2,4,6‐tri‐O‐allyl‐myo‐inositol. This implied the reinforcement of the networks by hydrogen bonding between the hydroxyl groups. Polyaddition of the latter product, a hexa(allyl ether), with dithiols yielded the corresponding networked polymers with much higher Tgs than those of all of the aforementioned networked polymers. This implied that efficient use of the hexafunctional monomer leads to the formation of more densely crosslinked polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1524–1529  相似文献   

8.
The structure and molecular dynamics of self-condensation products of three different melamine resins based on hexa(methoxy methyl)melamine are studied by 13C NMR in the solid state. The application of direct (DP) and cross-polarization (CP) pulse sequences shows that uncured and cured melamine resins are motionally heterogeneous systems, with the mobile and rigid parts consisting of the same basic structural units. Viscous lightly cured samples based on commercial melamine-formaldehyde resins contain low-molecular weight species which act as plasticizers. In these resins, three motionally different methyl groups are observed. Their existence is confirmed either by spectral deconvolution or by fitting the experimental signal intensities to the cross-polarization dynamics with the assumption of two cross-polarization-transfer rates. Fast cross-polarizing rigid methyl groups are accompanied with the spinning sidebands. On the basis of DP and CP relaxation measurements, quantitative results for three major structural units are calculated. Problems concerning the 14N-13C quadrupolar interactions and quantitative analysis are discussed. ©1995 John Wiley & Sons, Inc.  相似文献   

9.
Two acrylate monomers – 4‐(2′‐methoxycinnamoyl)phenyl acrylate, and 4‐(2′,5′‐dimethoxycinnamoyl)phenyl acrylate – comprising photocrosslinkable pendant chalcone moiety and a free radical polymerizable group were synthesized. The monomers were polymerized in the presence of ethyl methyl ketone at 70°C using benzoyl peroxide as the initiator. The polymers were characterized by UV, FT‐IR, 1H‐NMR, and 13C‐NMR spectra. The weight and number average molecular weights of the polymers were determined by gel permeation chromatography. The thermal stability of the polymers was studied by TGA under a nitrogen atmosphere. Glass transition temperatures of the polymers were studied by differential scanning calorimetry. The photoreactivity of the polymers was investigated for potential applications as photoresists in solution using various solvents. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Melamine was chosen as template, methacrylic acid was chosen as functional monomer, and divinylbenzene, ethylene glycol dimethacrylate, trimethylolpropane trimethylacrylate were chosen as cross‐linking agents, respectively. The WB97XD/6‐31G(d, p) method was used to calculate the geometry optimization of the different imprinting ratios, the action sites, the bonding situation, and the optimization of the cross‐linking agents. The nature of the imprinting effect was also studied by the atoms in molecules theory. The theoretical results showed that melamine interacts with methacrylic acid by hydrogen bonding, and the melamine molecularly imprinted polymers with a molar ratio of 1:6 have the most hydrogen bonds and the most stable structure. Divinylbenzene is the best cross‐linking agent for the melamine molecularly imprinted polymers. The melamine molecularly imprinted polymers were synthesized by precipitation polymerization. The results showed that the maximum adsorption capacity for molecularly imprinted polymers towards melamine is 19.84 mg/g, and the adsorption quantity of the polymers to melamine is obviously higher than that of cyromazine, cyanuric acid, and trithiocyanuric in milk. This study could provide theoretical and experimental references for the screening of the imprinting ratio and the cross‐linking agent for the given template and monomer system.  相似文献   

11.
A new straightforward strategy for synthesis of novel hyperbranched poly (ether amide)s from readily available monomers has been developed. By optimizing the reaction conditions, the AB2‐type monomers were formed dominantly during the initial reaction stage. Without any purification, the AB2 intermediate was subjected to further polymerization in the presence (or absence) of an initiator, to prepare the hyperbranched polymer‐bearing multihydroxyl end‐groups. The influence of monomer, initiator, and solvent on polymerization and the molecular weight (MW) of the resultant polymers was studied thoroughly. The MALDI–TOF MS of the polymers indicated that the polymerization proceeded in the proposed way. Analyses of 1H NMR and 13C NMR spectra revealed the branched structures of the polymers obtained. These polymers exhibit high‐moderate MWs and broad MW distributions determined by gel permeation chromatography (GPC) in combination with triple detectors, including refractive index, light scattering, and viscosity detectors. In addition, the examination of the solution behavior of these polymers showed that the values of intrinsic viscosity [η] and the Mark–Houwink exponent α were remarkably lower compared with their linear analogs, because of their branched nature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4309–4321, 2007  相似文献   

12.
This research highlights the application of highly efficient molecularly imprinted solid‐phase extraction for the preconcentration and analysis of melamine in aquaculture feed samples. Melamine‐imprinted polymers were synthesized employing methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross‐linker, respectively. The characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted polymers showed an excellent adsorption ability for melamine and were applied as special solid‐phase extraction sorbents for the selective cleanup of melamine. An off‐line molecularly imprinted solid‐phase extraction procedure was developed for the separation and enrichment of melamine from aquaculture feed samples prior to high‐performance liquid chromatography analysis. Optimum molecularly imprinted solid‐phase extraction conditions led to recoveries of the target in spiked feed samples in the range 84.6–96.6% and the relative standard deviation less than 3.38% (n = 3). The aquaculture feed sample was determined, and there was no melamine found. The results showed that the molecularly imprinted solid‐phase extraction protocols permitted the sensitive, uncomplicated and inexpensive separation and pre‐treatment of melamine in aquaculture feed samples.  相似文献   

13.
The 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) polymers, melamine polymers, and DOPO‐melamine copolymers have been successfully synthesized, and their flame retarding properties have also been investigated by blending with polypropylene (PP)/styrene‐ethylene‐butylene‐styrene (SEBS) alloys. Experimental results establish that all of them are good polymeric flame retardants. No blooming or color stains occur when they are incorporated into PP/SEBS alloys. Among lab‐made polymeric flame retardants, DOPO‐ melamine copolymers exhibit the best thermal stability and nonflammability. PP/SEBS alloys containing DOPO‐melamine copolymers display comparable thermal resistance and flame retarding behavior (Td = 290°C; char yield: 15.6%, LOI: 23, and flammability: UL‐94 V0) as the alloys containing common commercial flame retardants (i.e., DOPO, melamine, and ammonium polyphosphate). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Polymers derived from bio‐acceptable poly(methyl methacrylate) (PMMA), poly(2‐methoxyethyl acrylate) (PMEA), and poly(oligo(ethylene glycol) methyl ether methacrylate) (PPEGMA) have been prepared via atom transfer radical polymerization (ATRP) utilizing an initiator prepared from a fluoroalkoxy‐terminated oligoethylene glycol. Polymerizations are controlled as seen by both linear first‐order kinetics and molecular weight evolution coupled with low polydispersities (<1.25) with respect to conversion. A range of ligands have been used depending upon the nature of the monomer: N‐(n‐propyl)‐2‐pyridyl‐methanimine with the methacrylates MMA and PEGMA and 1,1,4,7,10,10‐hexamethyltriethylene tetramine (HMTETA) with MEA. In all cases the use of the fluorinated initiator results in a lower apparent rate of propagation (kpapp) as compared with the more conventional and nonfluorinated initiator, ethyl 2‐bromoisobutyrate. The initiator generally also serves as an internal plasticizer lowering the glass transition temperature from the parent polymers. The surface characteristics of the fluoroinitiator containing polymers are altered compared with the nonfluorinated analogues. This is reflected in a significant increase in the advancing water contact angles of all fluoro‐containing polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5770–5780, 2007  相似文献   

15.
The living synthesis of poly(1,3‐cyclohexadiene) was performed with an initiator adduct that was synthesized from a 1:2 (mol/mol) mixture of N,N,N,N′‐tetramethylethylenediamine (TMEDA) and n‐butyllithium. This initiator, which was preformed at 65 °C, facilitated the synthesis of high‐molecular‐weight poly(1,3‐cyclohexadiene) (number‐average molecular weight = 50,000 g/mol) with a narrow molecular weight distribution (weight‐average molecular weight/number‐average molecular weight = 1.12). A plot of the kinetic chain length versus the time indicated that termination was minimized and chain transfer to the monomer was eliminated when a preformed initiator adduct was used. Chain transfer was determined to occur when the initiator was generated in situ. The polymerization was highly sensitive to both the temperature and the choice of tertiary diamine. The use of the bulky tertiary diamines sparteine and dipiperidinoethane resulted in poor polymerization control and reduced polymerization rates (7.0 × 10−5 s−1) in comparison with TMEDA‐mediated polymerizations (1.5 × 10−4 s−1). A series of poly(1,3‐cyclohexadiene‐block‐isoprene) diblock copolymers were synthesized to determine the molar crossover efficiency of the polymerization. Polymerizations performed at 25 °C exhibited improved molar crossover efficiencies (93%) versus polymerizations performed at 40 °C (80%). The improved crossover efficiency was attributed to the reduction of termination events at reduced polymerization temperatures. The microstructure of these polymers was determined with 1H NMR spectroscopy, and the relationship between the molecular weight and glass‐transition temperature at an infinite molecular weight was determined for polymers containing 70% 1,2‐addition (150 °C) and 80% 1,4‐addition (138 °C). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1216–1227, 2005  相似文献   

16.
A novel star‐shaped poly(p‐dioxanone) was synthesized by the ring‐opening polymerization of p‐dioxanone initiated by pentaerythritol with stannous octoate as a catalyst in bulk. The effect of the molar ratio of the monomer to the initiator on the polymerization was studied. The polymers were characterized with 1H NMR and 13C NMR spectroscopy. The thermal properties of the polymers were investigated with differential scanning calorimetry and thermogravimetric analysis. The novel star‐shaped poly(p‐dioxanone) has a potential use in biomedical materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1245–1251, 2006  相似文献   

17.
(2→5)‐1,4‐Anhydro‐3‐O‐methyl‐pentitol, which is a novel carbohydrate polymer without an anomeric linkage, was synthesized by cationic cyclopolymerization of 1,2 : 4,5‐dianhydro‐3‐O‐methyl‐xylitol. When BF3·OEt2 was used as the initiator, soluble polymers were obtained in 28 to 50% yield. These polymers have number‐average molecular weights of 1 150 to 2 340 corresponding to an average degree of polymerization of 8.8 to 18.0. It was confirmed by 13C NMR that the resulting polymer mainly consists of 1,4‐anhydro‐3‐O‐methyl‐D L ‐arabinitol units.  相似文献   

18.
Bis(triphenylphosphoranilydene)ammonium (PNP+) triphenylmethanide (Ph3C) is a new metal‐free initiator for the living polymerization of methyl methacrylate (MMA). The kinetics of the polymerization strongly depend on the metal counterion of the initiator precursor. When the initiator is made from the metathesis reaction of Ph3CK and PNPCl, the polymerization follows first‐order kinetics up to 0°C with half‐lives below 0.1 s. The propagation rate constants are much higher than those obtained with tetraphenylphosphonium (TPP+) cations, indicating a smaller fraction of dormant ylides. When the initiator is synthesized from Ph3CLi, polymerization proceeds much slower and molecular weight distributions of the obtained polymers are broadened indicating that the active species are mostly lithium enolates in this case.  相似文献   

19.
A novel hexafunctional discotic initiator, 2,3,6,7,11,12‐hexakis(2‐bromobutyryloxy)triphenylene (HBTP), was synthesized by the esterification of 2,3,6,7,11,12‐hexahydroxytriphenylene with 2‐bromobutyryl chloride. Atom transfer radical polymerizations of styrene, methyl acrylate, and n‐butyl acrylate were carried out in 50 vol % tetrahydrofuran with HBTP/copper(I) bromide/2,2′‐bipyridyl as an initiation system. The polymers produced had well‐controlled molecular weights and narrow molecular weight distributions (<1.2). On the basis of 1H NMR spectra of the star polymer and its hydrolyzed products, we can conclude that the initiator quantitatively initiated the polymerization of vinyl monomers and that a star polymer with a discotic core was obtained. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2233–2243, 2001  相似文献   

20.
Star polymers with end‐functionalized arm chains (surface‐functionalized star polymers) were synthesized by the in situ linking reaction between ethylene glycol dimethacrylate (linking agent) and an α‐end‐functionalized linear living poly(methyl methacrylate) in RuCl2(PPh3)3‐catalyzed living radical polymerization; the terminal on the surface functionalities included amides, alcohols, amines, and esters. The star polymers were obtained in high yields (75–90%) with initiating systems consisting of a functionalized 2‐chloro‐2‐phenylacetate or ‐acetamide [F? C(O)CHPhCl; F = nPrNH? , HOCH2CH2O? , Me2NCH2CH2O? , or EtO? ; initiator] and n‐Bu3N (additive). The yield was lower with a functionalized 2‐bromoisobutyrate [Me2NCH2CH2OC(O)CMe2Br] initiator or with Al(Oi‐Pr)3 as an additive. Multi‐angle laser light scattering analysis showed that the star polymers had arm numbers of 10–100, radii of gyration of 6–23 nm, and weight‐average molecular weights of 1.3 × 105 to 3.0 × 106, which could be controlled by the molar ratio of the linking agent to the linear living polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1972–1982, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号