首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let G be a graph of order n and k ≥ 0 an integer. It is conjectured in [8] that if for any two vertices u and v of a 2(k + 1)‐connected graph G,d G (u,v) = 2 implies that max{d(u;G), d(v;G)} ≥ (n/2) + 2k, then G has k + 1 edge disjoint Hamilton cycles. This conjecture is true for k = 0, 1 (see cf. [3] and [8]). It will be proved in this paper that the conjecture is true for every integer k ≥ 0. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 8–20, 2000  相似文献   

2.
Let G be a graph of order n, and n = Σki=1 ai be a partition of n with ai ≥ 2. In this article we show that if the minimum degree of G is at least 3k−2, then for any distinct k vertices v1,…, vk of G, the vertex set V(G) can be decomposed into k disjoint subsets A1,…, Ak so that |Ai| = ai,viisAi is an element of Ai and “the subgraph induced by Ai contains no isolated vertices” for all i, 1 ≥ ik. Here, the bound on the minimum degree is sharp. © 1997 John Wiley & Sons, Inc.  相似文献   

3.
Ore proved in 1960 that if G is a graph of order n and the sum of the degrees of any pair of nonadjacent vertices is at least n, then G has a hamiltonian cycle. In 1986, Li Hao and Zhu Yongjin showed that if n ? 20 and the minimum degree δ is at least 5, then the graph G above contains at least two edge disjoint hamiltonian cycles. The result of this paper is that if n ? 2δ2, then for any 3 ? l1 ? l2 ? ? ? lk ? n, 1 = k = [(δ - 1)/2], such graph has K edge disjoint cycles with lengths l1, l2…lk, respectively. In particular, when l1 = l2 = ? = lk = n and k = [(δ - 1)/2], the graph contains [(δ - 1)/2] edge disjoint hamiltonian cycles.  相似文献   

4.
Let G be a graph and p ϵ (0, 1). Let A(G, p) denote the probability that if each edge of G is selected at random with probability p then the resulting spanning subgraph of G is connected. Then A(G, p) is a polynomial in p. We prove that for every integer k ≥ 1 and every k‐tuple (m1, m2, … ,mk) of positive integers there exist infinitely many pairs of graphs G1 and G2 of the same size such that the polynomial A(G1, p) − A(G2, p) has exactly k roots x1 < x2 < ··· < xk in (0, 1) such that the multiplicity of xi is mi. We also prove the same result for the two‐terminal reliability polynomial, defined as the probability that the random subgraph as above includes a path connecting two specified vertices. These results are based on so‐called A‐ and T‐multiplying constructions that are interesting in themselves. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 206–221, 2000  相似文献   

5.
We consider a generalized degree condition based on the cardinality of the neighborhood union of arbitrary sets of r vertices. We show that a Dirac-type bound on this degree in conjunction with a bound on the independence number of a graph is sufficient to imply certain hamiltonian properties in graphs. For K1,m-free grphs we obtain generalizations of known results. In particular we show: Theorem. Let r ≥ 1 and m ≥ 3 be integers. Then for each nonnegative function f(r, m) there exists a constant C = C(r, m, f(r, m)) such that if G is a graph of order n (n ≥ r, n > m) with δr(G) ≥ (n/3) + C and β (G) ≥ f(r, m), then (a) G is traceable if δ(G) ≥ r and G is connected; (b) G is hamiltonian if δ(G) ≥ r + 1 and G is 2-connected; (c) G is hamiltonian-connected if δ(G) ≥ r + 2 and G is 3-connected. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Let G be a connected claw-free graph on n vertices. Let ς3(G) be the minimum degree sum among triples of independent vertices in G. It is proved that if ς3(G) ≥ n − 3 then G is traceable or else G is one of graphs Gn each of which comprises three disjoint nontrivial complete graphs joined together by three additional edges which induce a triangle K3. Moreover, it is shown that for any integer k ≥ 4 there exists a positive integer ν(k) such that if ς3(G) ≥ nk, n > ν(k) and G is non-traceable, then G is a factor of a graph Gn. Consequently, the problem HAMILTONIAN PATH restricted to claw-free graphs G = (V, E) (which is known to be NP-complete) has linear time complexity O(|E|) provided that ς3(G) ≥ . This contrasts sharply with known results on NP-completeness among dense graphs. © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 75–86, 1998  相似文献   

7.
Let G be a graph of order n ≥ 5k + 2, where k is a positive integer. Suppose that the minimum degree of G is at least ?(n + k)/2?. We show that G contains k pentagons and a path such that they are vertex‐disjoint and cover all the vertices of G. Moreover, if n ≥ 5k + 7, then G contains k + 1 vertex‐disjoint cycles covering all the vertices of G such that k of them are pentagons. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 194–208, 2007  相似文献   

8.
Let G m,n be the class of strategic games with n players, where each player has m≥2 pure strategies. We are interested in the structure of the set of correlated equilibria of games in G m,n when n→∞. As the number of equilibrium constraints grows slower than the number of pure strategy profiles, it might be conjectured that the set of correlated equilibria becomes large. In this paper, we show that (1) the average relative measure of the set of correlated equilibria is smaller than 2−n; and (2) for each 1<c<m, the solution set contains c n correlated equilibria having disjoint supports with a probability going to 1 as n grows large. The proof of the second result hinges on the following inequality: Let c 1, …, c l be independent and symmetric random vectors in R k, lk. Then the probability that the convex hull of c 1, …, c l intersects R k + is greater than or equal to . Received: December 1998/Final version: March 2000  相似文献   

9.
If G is a graph on n vertices and r ≥ 2, we let mr(G) denote the minimum number of complete multipartite subgraphs, with r or fewer parts, needed to partition the edge set, E(G). In determining mr(G), we may assume that no two vertices of G have the same neighbor set. For such reducedgraphs G, we prove that mr(G) ≥ log2 (n + r − 1)/r. Furthermore, for each k ≥ 0 and r ≥ 2, there is a unique reduced graph G = G(r, k) with mr(G) = k for which equality holds. We conclude with a short proof of the known eigenvalue bound mr(G) ≥ max{n+ (G, n(G)/(r − 1)}, and show that equality holds if G = G(r, k). © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Let m → (Ck, Cn) signify the truth of the following statement: Let {V(G); ≥ m; if G contains no Ck, then G contains a Cn. Bondy and Erdös [1] proved that for n > 3 2n ? 1 → (Cn, Cn). They conjectured that 2n ? 1 → (Cn, Ck) for all n > 3 and all k < n and could prove it only for k < (2n)12. In this paper we prove this for all n > 4 and for all k < n.  相似文献   

11.
In this paper, it is proven that for each k ≥ 2, m ≥ 2, the graph Θk(m,…,m), which consists of k disjoint paths of length m with same ends is chromatically unique, and that for each m, n, 2 ≤ mn, the complete bipartite graph Km,n is chromatically unique. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The main theorem of that paper is the following: let G be a graph of order n, of size at least (n2 - 3n + 6)/2. For any integers k, n1, n2,…,nk such that n = n1 + n2 +. + nk and ni ? 3, there exists a covering of the vertices of G by disjoint cycles (Ci) =l…k with |Ci| = ni, except when n = 6, n1 = 3, n2 = 3, and G is isomorphic to G1, the complement of G1 consisting of a C3 and a stable set of three vertices, or when n = 9, n1 = n2 = n3 = 3, and G is isomorphic to G2, the complement of G2 consisting of a complete graph on four vertices and a stable set of five vertices. We prove an analogous theorem for bipartite graphs: let G be a bipartite balanced graph of order 2n, of size at least n2 - n + 2. For any integers s, n1, n2,…,ns with ni ? 2 and n = n1 + n2 + ? + ns, there exists a covering of the vertices of G by s disjoint cycles Ci, with |Ci| = 2ni.  相似文献   

13.
14.
Let G be the diamond (the graph obtained from K 4 by deleting an edge) and, for every n ≥ 4, let f(n, G) be the minimum integer k such that, for every edge-coloring of the complete graph of order n which uses exactly k colors, there is at least one copy of G all whose edges have different colors. Let ext(n, {C 3, C 4}) be the maximum number of edges of a graph on n vertices free of triangles and squares. Here we prove that for every n ≥ 4,
ext(n, {C3, C4})+ 2 £ f(n,G) £ ext(n, {C3,C4})+ (n+1).{\rm {ext}}(n, \{C_3, C_4\})+ 2\leq f(n,G)\leq {\rm {ext}}(n, \{C_3,C_4\})+ (n+1).  相似文献   

15.
Let A be doubly stochastic, and let τ1,…,τm be m mutually disjoint zero diagonals in A, 1?m?n-1. E. T. H. Wang conjectured that if every diagonal in A disjoint from each τk (k=1,…,m) has a constant sum, then all entries in A off the m zero diagonals τk are equal to (n?m)-1. Sinkhorn showed the conjecture to be correct. In this paper we generalize this result for arbitrary doubly stochastic zero patterns.  相似文献   

16.
Let G be a graph of order n. We show that if G is a 2-connected graph and max{d(u), d(v)} + |N(u) U N(v)| ≥ n for each pair of vertices u, v at distance two, then either G is hamiltonian or G ?3Kn/3 U T1 U T2, where n ? O (mod 3), and T1 and T2 are the edge sets of two vertex disjoint triangles containing exactly one vertex from each Kn/3. This result generalizes both Fan's and Lindquester's results as well as several others.  相似文献   

17.
The tree partition number of an r‐edge‐colored graph G, denoted by tr(G), is the minimum number k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex‐disjoint monochromatic trees. We determine t2(K(n1, n2,…, nk)) of the complete k‐partite graph K(n1, n2,…, nk). In particular, we prove that t2(K(n, m)) = ? (m‐2)/2n? + 2, where 1 ≤ nm. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 133–141, 2005  相似文献   

18.
We present a new condition on the degree sums of a graph that implies the existence of a long cycle. Let c(G) denote the length of a longest cycle in the graph G and let m be any positive integer. Suppose G is a 2-connected graph with vertices x1,…,xn and edge set E that satisfies the property that, for any two integers j and k with j < k, xjxk ? E, d(xi) ? j and d(xk) ? K - 1, we have (1) d(xi) + d(xk ? m if j + k ? n and (2) if j + k < n, either m ? n or d(xj) + d(xk) ? min(K + 1,m). Then c(G) ? min(m, n). This result unifies previous results of J.C. Bermond and M. Las Vergnas, respectively.  相似文献   

19.
 In this paper we study three-color Ramsey numbers. Let K i,j denote a complete i by j bipartite graph. We shall show that (i) for any connected graphs G 1, G 2 and G 3, if r(G 1, G 2)≥s(G 3), then r(G 1, G 2, G 3)≥(r(G 1, G 2)−1)(χ(G 3)−1)+s(G 3), where s(G 3) is the chromatic surplus of G 3; (ii) (k+m−2)(n−1)+1≤r(K 1,k , K 1,m , K n )≤ (k+m−1)(n−1)+1, and if k or m is odd, the second inequality becomes an equality; (iii) for any fixed mk≥2, there is a constant c such that r(K k,m , K k,m , K n )≤c(n/logn), and r(C 2m , C 2m , K n )≤c(n/logn) m/(m−1) for sufficiently large n. Received: July 25, 2000 Final version received: July 30, 2002 RID="*" ID="*" Partially supported by RGC, Hong Kong; FRG, Hong Kong Baptist University; and by NSFC, the scientific foundations of education ministry of China, and the foundations of Jiangsu Province Acknowledgments. The authors are grateful to the referee for his valuable comments. AMS 2000 MSC: 05C55  相似文献   

20.
Summary LetA+(k) denote the ring [t]/t k+1 and letG be a reductive complex Lie algebra with exponentsm 1, ...,m n. This paper concerns the Lie algebra cohomology ofGA +(k) considered as a bigraded algebra (here one of the gradings is homological degree and the other, which we callweight, is inherited from the obvious grading ofGA +(k)). We conjecture that this Lie algebra cohomology is an exterior algebra withk+1 generators of homological degree 2m s +1 fors=1,2, ...,n. Of thesek+1 generators of degree 2m s +1, one has weight 0 and the others have weights (k+1)m s +t fort=1,2, ...,k.It is shown that this conjecture about the Lie algebra cohomology of A +(k) implies the Macdonald root system conjectures. Next we consider the case thatG is a classical Lie algebra with root systemA n ,B n ,C n , orD n. It is shown that our conjecture holds in the limit onn asn approaches infinity which amounts to the computation of the cyclic and dihedral cohomologies ofA+(k). Lastly we discuss the relevance of this limiting case to the case of finiten in this situation.Partially supported by NSF grant number MCS-8401718 and a Bantrell Fellowship  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号