首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of novel conjugated polyfluorene co‐ polymers, poly[(9,9′‐didecylfluorene‐2,7‐diyl)‐co‐(4,7′‐di‐2‐thienyl‐ 2′,1′,3′‐benzothiadiazole‐5,5‐diyl)‐co‐(pyrene‐1,6‐diyl)], are synthesized via Pd(II)‐mediated polymerization from 2,7‐bis(4′,4′,5′, 5′‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)‐9,9′‐di‐n‐decylfluorene, 4, 7‐di(2‐bromothien‐5‐yl)‐2,1,3‐benzothiadiazole, and 1,6‐dibromopyrene with a variety of monomer molar ratios. The field‐effect carrier mobilities and optical, electrochemical, and photovoltaic properties of the copolymers are systematically investigated. The hole mobilities of the copolymers are found to be in the range 7.0 × 10?5 ? 8.0 × 10?4 cm2 V?1 s?1 and the on/off ratios were 8 × 103 ? 7 × 104. Conventional polymer solar cells (PSCs) with the configuration ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al are fabricated. Under optimized conditions, the polymers display power conversion efficiencies (PCEs) for the PSCs in the range 1.99–3.37% under AM 1.5 illumination (100 mW cm?2). Among the four copolymers, P2, containing a 2.5 mol % pyrene component incorporated into poly[9,9′‐didecylfluorene‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PFDTBT) displays a PCE of 3.37% with a short circuit current of 9.15 mA cm?2, an open circuit voltage of 0.86 V, and a fill factor of 0.43, under AM 1.5 illumination (100 mW cm?2). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
New diketopyrrolopyrrole (DPP)‐containing conjugated polymers such as poly(2,5‐bis(2‐octyldodecyl)‐3‐(5‐(pyren‐1‐yl)thiophen‐2‐yl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) (P(DTDPP‐alt‐(1,6)PY)) and poly(2,5‐bis(2‐octyldodecyl)‐3‐(5‐(pyren‐2‐yl)thiophen‐2‐yl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) (P(DTDPP‐alt‐(2,7)PY)) were successfully synthesized via Suzuki coupling reactions under Pd(0)‐catalyzed conditions. P(DTDPP‐alt‐(2,7)PY), incorporating 2,5‐bis(2‐octyldodecyl)‐3,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione (DTDPP) at the 2,7‐position of a pyrene ring showed a lower band‐gap energy (E. = 1.65 eV) than the 1,6‐substituted analog, P(DTDPP‐alt‐(1,6)PY) (E = 1.71 eV). The energies of the molecular frontier orbitals of the substituted polymers were successfully tuned by changing the anchoring position of DTDPP from the 1,6‐ to the 2,7‐position of the pyrene ring. An organic thin‐film transistor fabricated using the newly synthesized P(DTDPP‐alt‐(2,7)PY), as a semiconductor material exhibited a maximum mobility of up to 0.23 cm2 V?1 s?1 (Ion/off ~ 106), which was much larger than that obtained using P(DTDPP‐alt‐(1,6)PY). This distinction is attributed to morphological differences in the solid state arising from differences between the geometrical configurations of DTDPP and the pyrene ring. In addition, the organic phototransistor devices made of P(DTDPP‐alt‐(2,7)PY) showed interesting photoinduced enhancement of drain current when irradiating the excitation light whose intensity is very small. Based on the photoinduced effect on IDS, photocontrolled memory could be realized under the variation of gate voltages. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
Novel polyfluorene copolymers with pendant hydroxyl groups, poly[2,7‐(9,9‐dihexylfluorene)‐2,7‐(9,9‐bis(6‐hydroxyhexyl)fluorene)‐co‐2,7‐(9,9‐dihexylfluorene)‐1,4‐phenylene] (PFP‐OH) and poly[2,7‐(9,9‐dihexylfluorene)‐2,7‐(9,9‐bis(6‐hydroxyhexyl)fluorene)‐co‐2,7‐(9,9‐dihexylfluorene)‐4,7‐(2,1,3‐benzothiadiazole)] (PFBT‐OH) were prepared. Acid‐catalyzed polycondensations of tetraethoxysilane were carried out in the presence of these polymers to obtain homogeneous hybrids. Photoluminescence spectra of these hybrids suggested the polymers were immobilized in silica matrix retaining their π‐conjugated structures. Further, hybrids of coat film were prepared utilizing perhydropolysilazane as a silica precursor. Their optical properties were examined. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
The double Knoevenagel condensation of 1,4‐dibenzoyloxyanthraquinone with methyl esters of arylacetic acids affords a series of compounds based upon a previously unknown 1,8‐dioxa‐benzo[e]pyrene‐2,7‐dione heterocyclic core. The aryl groups incorporated in the 3‐ and 6‐positions can be oxidatively coupled to the π‐expanded backbone to produce a further new heterocyclic core: 1,10‐dioxa‐dibenzo[dj]coronene‐2,9‐dione. The intriguing optical properties of these π‐expanded coumarin derivatives are discussed and rationalized through quantum chemical calculations. The broad absorption bands of 1,8‐dioxa‐benzo[e]pyrene‐2,7‐dione‐based dyes are attributed to both HOMO?1→LUMO and HOMO→LUMO transitions, which have a similar energy. Weakly coupled electron‐donating aryl substituents result in a moderate bathochromic shift of both the absorption and emission by 30–60 nm in toluene. The emissive properties of these compounds are in part determined by the oscillator strength of the main transition, lifetimes of the excited state, and by the energy match of the excited state with a triplet state of a similar energy. The 1,10‐dioxa‐dibenzo[dj]coronene‐2,9‐dione displays a much smaller Stokes shift, yet a markedly increased fluorescence quantum yield of 90 % owing to the increased rigidity compared with the 1,8‐dioxa‐benzo[e]pyrene‐2,7‐dione core.  相似文献   

5.
Alternating π‐conjugated copolymers of 1,8‐naphthyridine‐2,6‐diyl ( 1,8‐Nap ) with 9,9‐dioctylfluorene‐2,7‐diyl ( P(Flu‐Ph‐1,8‐Nap) ) and 2,5‐didodecyloxy‐1,4‐phenylene ( P(ROPh‐Ph‐1,8‐Nap) ) have been synthesized by Pd‐catalyzed organometallic polycondensation. The copolymers showed UV‐vis absorption peaks at around 390 nm in o‐dichlorobenzene. The polymers were photoluminescent both in o‐dichlorobenzene and in the solid state. In o‐dichlorobenzene, the emission peaks of P(Flu‐Ph‐1,8‐Nap) and P(ROPh‐Ph‐1.,8‐Nap) appeared at λEM = 440 and 471 nm, with quantum yields of 87% and 66%, respectively. Electrochemical data revealed that 1,8‐Nap behaved as a typical electron‐accepting unit. When P(Flu‐Ph‐1,8‐Nap) was treated with 10‐camphorsulfonic acid, the emission peak shifted to λEM = 598 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Fluorene‐based polymer derivatives are promising materials for organic electronic devices because of their photoluminescence and electroluminescence, good film‐forming ability, and favorable chemical and thermal properties. Although optical properties of polyfluorene have already been reported, most of the studies focused on the linear optical properties, whereas nonlinear optical characteristics have only recently received more detailed attention. Here, we report on two polyfluorene derivatives, poly(9,9′‐n‐dihexyl‐2,7‐fluorenediyl) (LaPPS 10) and poly(9,9′‐n‐dihexyl‐2,7‐fluorene‐diyl‐vinylene) (LaPPS 38), which present intense nonlinear absorption and fluorescence. Two‐photon absorption cross‐section properties of both polymers were characterized in the spectral range from 500 nm up to 900 nm, reaching peak values around 2000 Göppert Mayer units. Optical limiting behavior and two‐photon‐induced fluorescence of both polymers have also been investigated. Furthermore, the first molecular hyperpolarizability of the polymers was also studied using hyper‐Rayleigh scattering. In addition, the three‐photon absorption (3PA) spectra of both materials were also investigated, and 3PA cross‐section values in the order of 1 × 10?78 cm6 s2 photon?2 were observed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 747–754  相似文献   

7.
Herein, we investigate the influence of spacer length on the homoassociation and heteroassociation of end‐functionalized hydrogen‐bonding polymers based on poly(n‐butyl acrylate). Two monofunctional ureido‐pyrimidinone (UPy) end‐functionalized polymers were prepared by atom transfer radical polymerization using self‐complementary UPy‐functional initiators that differ in the spacer length between the multiple‐hydrogen‐bonding group and the chain initiation site. The self‐complementary binding strength (Kdim) of these end‐functionalized polymers was shown to depend critically on the spacer length as evident from 1H NMR and diffusion‐ordered spectroscopy. In addition, the heteroassociation strength of the end‐functionalized UPy polymers with end‐functionalized polymers containing the complementary 2,7‐diamido‐1,8‐naphthyridine (NaPy) hydrogen‐bond motif is also affected when the aliphatic spacer length is too short. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Three new alternating conjugated polymers consisting of pyrene and 3‐dodecylthiophene ( PPyMT ), 4,4′‐didodecyl‐2,2′‐bithiophene ( PPyBT ), or 9,9‐didodecylfluorene ( PPyFlu ) moieties have been prepared using Suzuki coupling reaction or Sugimoto approaches. The polymers were readily soluble in common organic solvents and exhibited good thermal stability in nitrogen and air atmospheres. The structures and optical properties of the polymers were characterized by NMR, FTIR, XRD, UV–vis, and fluorescence spectroscopy. PPyMT and PPYBT showed blue‐light emission in solution, whereas PPyFlu performed blue‐light emitting in film state. The polymers exhibited an intermolecular aggregation and structural ordering due to pyrene–pyrene π–π stacking interaction. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
A series of networked polymers bearing isocyanurate moiety was synthesized by cyclotrimerization of diisocyanates, with employing methylenediphenyl 4,4′‐diisocyanate and 1,6‐hexamethylenediisocyanate (HMDI) in several feed ratios. In spite of the large difference in intrinsic reactivity between these two diisocyanates, their coannulation proceeded efficiently by using sodium p‐toluenesulfinate (pTolSO2Na) and 1,3‐dimethyl‐2‐imidazolidinone as a catalyst and a solvent, respectively. The resulting networked polymers were transparent and exhibited excellent thermal stability. In addition, HMDI‐rich feed ratios allowed for the formation of networked polymers with increased flexibility. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2631–2637  相似文献   

10.
Recent results concerning the synthesis of new main‐chain syndioregic nonlinear optical polymers are presented. In particular, the synthesis of polymers with extended pi conjugation in the chromophore and chromophores with improved thermal stability are presented. The nonlinear optical coefficient of several of the polymers and the optical loss at 1.3 and 1.55 μm were measured and are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2824–2839, 2000  相似文献   

11.
Two neutral precursor conjugated copolymers based 2,7‐diethynylfluorene and 3,6‐diethynylcarbazole units in the main chain ( PFC and PF2C ) were prepared by Hay coupling polymerization. Their cationic copolymers ( CPFC and CPF2C ) were prepared by the methylation of their diethylpropylamino groups with CH3I. For comparison, neutral conjugated homopolymers of 2,7‐diethynylfluorene ( PF ), 3,6‐diethynylcarbazole units ( PC ) and their cationic polymers ( CPF and CPC ) were also prepared with the same method. A comparative study on the optical properties of cationic polymers CPFC and CPF2C in DMF and DMF/H2O showed that they underwent water‐induced aggregation. The spectral behaviors of CPFC and CPF2C with calf thymus DNA showed that a distinct fluorescent quenching took place with minute addition of CT DNA (3.3 × 10?13 M). The results showed that the polymers would be promising biosensor materials for sensitive detection of DNA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4168–4177, 2010  相似文献   

12.
Novel π‐conjugating polymers based on dibenzothiophene were synthesized with a novel dibenzothiophene derivative, 2,8‐bis(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)dibenzothiophene ( 1 ), prepared from dibenzothiophene. The Suzuki coupling polycondensation of 1 with 2,7‐dibromo‐9,9‐dioctylfluorene, 3,6‐dibromo‐9‐octylcarbazole, or 1,4‐dibromo‐2,5‐dioctyloxybenzene afforded the corresponding dibenzothiophene‐based polymers. The measurements of photoluminescence indicated that all these polymers exhibited blue emission in solution. The copolymer containing dibenzothiophene and 9,9‐dioctylfluorene units exhibited higher thermal stability than poly[(9,9‐dioctylfluorene‐2,7‐diyl)], although the quantum yield of copolymer was lower than that of poly[(9,9‐dioctylfluorene‐2,7‐diyl)]. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1521–1526, 2003  相似文献   

13.
Poly(9,9‐dihexylfluorene‐2,7‐vinylene‐alt‐dibenzothiophene‐2,8‐vinylene) (PS) and poly(9,9‐dihexylfluorene‐2,7‐vinylene‐alt‐dibenzothiophene‐5,5‐dioxide‐2,8‐ vinylene) (PSO) as well as corresponding model compounds were synthesized by Heck coupling. Both the polymers and model compounds were readily soluble in common organic solvents such as tetrahydrofuran, dichloromethane, chloroform, and toluene. The polymers showed a decomposition temperature at ~430 °C and a char yield of about 65% at 800 °C in N2. The glass‐transition temperatures of the polymers were almost identical (75–77 °C) and higher than those of the model compounds (26–45 °C). All samples absorbed around 390 nm, and their optical band gaps were 2.69–2.85 eV. They behaved as blue‐greenish light emitting materials in both solutions and thin films, with photoluminescence emission maxima at 450–483 nm and photoluminescence quantum yields of 0.52–0.72 in solution. Organic light‐emitting diodes with an indium tin oxide/poly(ethylene dioxythiophene):poly(styrene sulfonic acid)/polymer/Mg:Ag/Ag configuration with polymers PS and PSO as emitting layers showed green electroluminescence with maxima at 530 and 540 nm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6790–6800, 2006  相似文献   

14.
Novel linear homogeneous polyurethanes and polyureas with enhanced hydrophilic character have been successfully prepared from sugar‐based monomers having their hydroxyl groups free or partially protected. By the reaction of primary hydroxyl groups of xylitol with dimethyl hexamethylene dicarbamate (HMDC) or di‐tert‐butyl‐4,4′‐diphenyl methyl dicarbamate (MDC), two new linear semicrystalline polyurethanes [PU(X‐HMDC) and PU(X‐MDC)] have been prepared. Likewise, by the reaction of xylitol with the analogous diisocyanates hexamethylene diisocyanate (HMDI) or 4,4′‐methylenebis(phenyl isocyanate) (MDI), similar polyurethanes [PU(X‐HMDI) and PU(X‐MDI)] were obtained. However, these latter polyurethanes present some degree of crosslinking because of the higher reactivity of the diisocyanate comonomers. Linear hydrophilic polyureas having free hydroxyl groups joined to the main chain have also been prepared by the reaction of the same diisocyanates (HMDI and MDI) with 1,6‐diamino‐1,6‐dideoxy‐D ‐mannitol and 1,6‐diamino‐1,6‐dideoxy‐3:4‐O‐isopropylidene‐D ‐mannitol. As far as we are aware, this kind of polyhydroxylated polyurea has not been previously described in the literature. The new polymers were characterized by standard methods (elemental analyses, gel permeation chromatography, IR, and NMR). The polyurethanes were hydrolytically degradable under physiological conditions, in contrast with less‐hydrophilic linear polyurethanes previously described. The thermal properties of the novel polymers were investigated by thermogravimetric analysis and differential scanning calorimetry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Fluorene‐based polymers are widely known materials due to a combination of features such as photoluminescence and electroluminescence, oxidative stability, and film‐forming ability. However, studies reporting nonlinear optical properties in this class of conjugated polymer are scarce. Here, we report a new class of polyfluorene derivatives poly(9,9′‐n‐dihexyl‐2,7‐fluorenedilvinylene‐alt‐1,4‐phenylenevinylene), poly(9,9′‐n‐dihexyl‐2,7‐fluorenedilvinylene‐alt‐2,5‐thiophene), and poly[(9,9‐di‐hexylfluorenediylvinylene‐alt‐1,4‐phenylenevinylene)‐co‐((9,9′‐(3‐t‐butylpropanoate) fluorene‐1,4‐phenylene)] displaying high two‐photon absorption (2PA) in the spectral range from a 490 to 1100 nm. The 2PA cross‐section peak values for these materials are as high as 3000 Göppert Mayer (1 GM = 1 × 10?50 cm4 s/photon), which is related to the high degree of conjugation along the polymer backbone. The polymers that were used in this study presented a strong two‐photon luminescence and also displayed optical limiting behavior, which, in combination with their well‐established properties, make them highly suitable for nonlinear optical devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 148–153, 2012  相似文献   

16.
A new series of fluorene‐based polyquinoxalines with an ether linkage in the main chain were prepared by the polycondensation reaction between a tetraketone monomer and 3,3′,4,4′‐tetraaminodiphenyl ether. The polycondensation was usually carried out in m‐cresol. The resulting polymers ( P1 – P3 ) [ P1 = poly(quinoxaline‐co‐9,9‐dihexyl‐2,7‐dimethyl‐9H‐fluorene) P2 = poly(quioxaline‐co‐9,9‐dihexyl‐9‐pentyl‐2,7‐di‐p‐tolyl‐9H‐fluorene) P3 = poly(quioxaline‐co‐9,9‐bis‐(4‐methoxy‐phenyl)‐2,7‐dimethyl‐9H‐fluorene)] showed good solubility in common organic solvents and high thermal stability with only a 5% weight loss up to 440 °C. P1 and P2 had very high glass‐transition temperatures of 212 and 223 °C, respectively, whereas P3 did not show any phase‐transition temperature in repeated scans up to 300 °C. All the polymers in photoluminescence showed blue emissions in the range of 432–465 nm, both in chloroform solutions and in thin films. Light‐emitting diode devices of the configuration indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer:poly(N‐vinylcarbazole) blend (2:8)/LiF/Al were fabricated with P1 or P2 and emitted blue light with electroluminescence peak wavelengths of 434 and 448 nm, respectively. The maximum brightness and the external quantum efficiency of P1 were 0.56 μW/cm2 at 29 V and 0.056%, whereas P2 showed 0.50 μW/cm2 at 34 V and a relatively low value of 0.015%, respectively. Cyclic voltammetry studies revealed that these polymers possessed low‐lying ionization potential energy levels ranging from ?5.49 to ?5.86 eV and low‐lying electron affinity energy levels ranging from ?2.65 to ?2.88 eV. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1189–1198, 2006  相似文献   

17.
A series of main chain donor‐acceptor low‐bandgap conjugated polymers were designed, synthesized, and used for the fabrication of polymer solar cells. The absorption spectra of low‐bandgap conjugated polymers were tuned by the ratio of three copolymerization monomers. The polymers in films exhibited broad absorption ranging from 300 to 1000 nm with optical bandgaps of around 1.40 eV. All of the polymers have been investigated as an electron donor in photovoltaic cells blending with PCBM ([6, 6]‐phenyl C61‐butyric acid methyl ester) as an electron acceptor and power conversion efficiencies (PCEs) of 1.32–1.8% have been obtained. As for P1 , PCE increases from 1.67 to 2.44% after adding 1,8‐diiodooctance as an additive. The higher PCEs are probably because of better phase separation of blend films. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2571–2578, 2010  相似文献   

18.
Hydrosilylation polymerizations of 1,1‐dimethyl‐2,5‐bis(4‐ethynylphenyl)‐3,4‐diphenylsilole with aromatic silylhydrides including 1,4‐bis(dimethylsilyl)benzene, 4,4′‐bis(dimethylsilyl)biphenyl, 2,5‐bis(dimethylsilyl)thiophene, and 2,7‐bis(dimethylsilyl)‐9,9‐dihexylfluorene in the presence of Rh(PPh3)3Cl catalyst in refluxed tetrahydrofuran afford a series of silole‐containing poly(silylenevinylene)s. Under optimum condition, the alkyne polyhydrosilylation reactions progress efficiently and regioselectively, yielding polymers with high molecular weights (Mw up to 95,300) and good stereoregularity (E content close to 99%) in high yields (up to 92%). The polymers are processable and thermally stable, with high decomposition temperatures in the range of 420?449 °C corresponding to 5% weight loss. They are weakly fluorescent in the solution state but become emissive in the aggregate and film states, demonstrating their aggregation‐enhanced emission characteristics. The explosive sensing capabilities of the polymers are examined in both solution and aggregate states. The emissions of the polymers aggregates in aqueous mixture are quenched more efficiently by picric acid in an exponential pattern with high quenching constants (up to 27,949 L mol?1), suggesting that the polymers aggregates are sensitive chemosensors for explosive detection. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
The catalytic polymerization of a series of 1,6‐heptadiynes (1–4) by Mo(CO)6 under simple thermal conditions produces corresponding poly(1,6‐heptadiyne)s with highly conjugated polyenes. The number‐average molecular weights of the polymers range from 2400 to 110,000. The structures of the polymers depend on the types of monomers employed. Namely, diethyl dipropargylmalonate (DEDPM) and 1 result in a polyene backbone consisting of only five‐membered rings, whereas the remaining monomers (2–4) result in a mixture of both five‐membered and six‐membered ring structures. The copolymerization of DEDPM and phenylacetylene (PA) can also be effected by the same catalysis to yield a polyene backbone consisting of only five‐membered rings as well as PA. The relative molar ratio of the two monomers determines the yields and molecular weights of the copolymers. Comparative studies show that Mo(CO)6 exhibits reactivity toward DEDPM alone, thus initially catalyzing metathesis cyclopolymerization of DEDPM followed by copolymerization with PA. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2663–2670, 2000  相似文献   

20.
Fluorene‐based polymers containing various fluorinated benzene (fluorobenzene, p‐difluorobenzene, and tetrafluorobenzene) moieties were synthesized. In addition, perfluorooctylation of poly‐[(9,9‐dioctylfluorene‐2,7‐diyl)‐co‐(fluorene‐2,7‐diyl)] was carried out to afford fluorene‐based polymers with perfluorooctyl moiety at the 9‐position on the fluorene ring. To evaluate the effect of fluorine moiety, polymers containing nonfluorinated benzene moieties and nonfluorinated octyl groups were synthesized. The photoluminescence measurements indicated that all these polymers exhibited blue emission in solution, but a polymer containing a perfluorooctyl group did not emit in the film state. Polymers containing various fluorinated benzene moieties showed higher fluorescence quantum yields and thermal stability than those containing nonfluorinated benzene. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3143–3150, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号