首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The anionic polymerization of N‐acryloyl‐N′‐(4‐methylbenzoyl)urea (1) was carried out at 80°C for 24 h in DMF, DMSO, acetonitrile, or toluene by t‐BuOK or DBU (3 mol %) as an initiator to obtain polymer 3 in a good yield. The structure of 3 was dependent upon the initiator used, in which t‐BuOK selectively conducted the hydrogen‐transfer polymerization, while DBU partially induced the vinyl polymerization (16–20%). Likewise, N‐acryloyl‐N‐methyl‐N′‐(4‐methylbenzoyl)urea (2, i.e., an N‐methylated derivative of 1) was subjected to the hydrogen‐transfer polymerization. Although the yield of the polymer was lower in comparison with 1, the structure of the obtained polymer 4 was similarly governed by the initiator. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 465–472, 1999  相似文献   

3.
The photoinduced solution polymerization of 4‐methacryloyl‐1,2,2,6,6‐pentamethyl‐piperidinyl (MPMP), used as a reactive hindered amine piperidinol derivative, was performed. The obtained MPMP homopolymer had a very narrow molecular weight distribution (1.06–1.39) according to gel permeation chromatography. The number‐average and weight‐average molecular weights increased linearly with the monomer conversion, this being characteristic of controlled/living free‐radical polymerizations. Electron spin resonance signals were detected in the MPMP homopolymer and in a polymer mixture solution, and they were assigned to nitroxide radicals, which were bound to the polymer chains and persisted at a level of 10?9 mol/L during the polymerization. Instead of the addition of mediated nitroxide radicals such as 2,2,6,6‐tetramethyl‐piperidinyl‐1‐oxy (TEMPO), those radicals (>N? O ·) were formed in situ during the photopolymerization of MPMP, and so the reaction mechanism was understood as being similar to that of TEMPO‐mediated controlled/living free‐radical polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2659–2665, 2004  相似文献   

4.
Radical polymerization of selected 1‐alkenes, (1‐hexene, 1‐octene and 2‐methyl‐1‐heptene), initiated with classical radical initiators and catalyzed by lithium salts of selected carboranes was studied. In accordance with recently published results it was found that the use of radical initiators under catalysis by “naked” lithium cation of carboranes promotes the radical polymerization of 1‐alkenes, otherwise nonpolymerizable by the radical mechanism. However, although in our experiments relatively high monomers conversions are reached for some of the thermal initiators used, only low‐molecular‐weight oligomers with Mn < 1000 are formed, regardless of the initiator and carborane anion used. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
6.
A novel, functional‐group‐tolerant, and highly regioselective one‐pot synthesis of six 4‐chloro‐1‐aryl‐3‐oxypyrazoles, 8a – 8f , containing an oximino ester moiety has been developed. Their structures were characterized by 1H‐ and 13C‐NMR, IR, MS, and elemental analyses. The regioselectivity of the reaction was also determined by single‐crystal X‐ray diffraction analysis of product 8d . The reaction pathway, proposed with the aid of DFT calculations, likely proceeds via a DMF‐catalyzed mechanism, which involves an electrophilic attack by SOCl2 and two nucleophilic substitutions by benzyl bromide (BnBr) and Cl?, respectively, as the key steps. A preliminary in vitro bioassay indicated that most compounds exhibited good fungicidal activities against Sclerotinia sclerotiorum and Gibberella zeae. Especially, 8d and 8e displayed higher or similar fungicidal activities compared with pyraclostrobin at the concentration of 10 μg/ml.  相似文献   

7.
The polymerization of N‐methyl‐α‐fluoroacrylamide (NMFAm) initiated with dimethyl 2,2′‐azobisisobutyrate (MAIB) in benzene was studied kinetically and with electron spin resonance. The polymerization proceeded heterogeneously with the highly efficient formation of long‐lived poly(NMFAm) radicals. The overall activation energy of the polymerization was 111 kJ/mol. The polymerization rate (Rp) at 50 °C is given by Rp = k[MAIB]0.75±0.05 [NMFAm]0.44±0.05. The concentration of the long‐lived polymer radical increased linearly with time. The formation rate (Rp?) of the long‐lived polymer radical at 50 °C is expressed by Rp? = k[MAIB]1.0±0.1 [NMFAm]0±0.1. The overall activation energy of the long‐lived radical formation was 128 kJ/mol, which agreed with the energy of initiation (129 kJ/mol), which was separately estimated. A comparison of Rp? with the initiation rate led to the conclusion that 1‐methoxycarbonyl‐1‐methylethyl radicals (primary radicals from MAIB), escaping from the solvent cage, were quantitatively converted into the long‐lived poly(NMFAm) radicals. Thus, this polymerization involves completely unimolecular termination due to polymer radical occlusion. 1H NMR‐determined tacticities of resulting poly(NMFAm) were estimated to be rr = 0.34, mr = 0.48, and mm = 0.18. The copolymerization of NMFAm(M1) and St(M2) with MAIB at 50 °C in benzene gave monomer reactivity ratios of r1 = 0.61 and r2 = 1.79. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2196–2205, 2001  相似文献   

8.
New 2,5‐norbornadiene‐type monomers bearing 1‐adamantyl and cyclohexyl ester groups on their 2‐position polymerized with azobisisobutyronitrile to form the polymers consisting of two types of polymer unit structures. The major part had a saturated nortricyclene framework, which was formed by 2,6‐addition along with intramolecular cyclization on the norbornadiene moiety. The minor part consisted of 2‐norbornene‐type units constructed via 2,3‐addition. A series of norbornadiene‐based monomers spontaneously polymerized in the presence of oxygen. Because a radical inhibitor, namely hydroquinone, could suppress this spontaneous reaction, it was indicated that the oxygen‐induced polymerization proceeds via free‐radical polymerization mechanism. Changing a quantity of provided oxygen gas (O2) to a norbornadiene monomer significantly affected on polymerization results, in specific, molecular weight of the formed polymer, which indicated that oxygen serves as one of the key reagents for the formation of free‐radical initiating species. It was proven that the combination of norbornadiene ethyl ester with O2 was applicable as a new free‐radical initiator for polymerization of methyl methacrylate. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2528–2536  相似文献   

9.
The radical ring‐opening polymerization (RROP) behavior of the following monomers is reviewed, and the possibility for application to functional materials is described: cyclic disulfide, bicyclobutane, vinylcyclopropane, vinylcyclobutane, vinyloxirane, vinylthiirane, 4‐methylene‐1,3‐dioxolane, cyclic ketene acetal, cyclic arylsulfide, cyclic α‐oxyacrylate, benzocyclobutene, o‐xylylene dimer, exo‐methylene‐substituted spiro orthocarbonate, exo‐methylene‐substituted spiro orthoester, and vinylcyclopropanone cyclic acetal. RROP is a promising candidate for producing a wide variety of environmentally friendly functional polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 265–276, 2001  相似文献   

10.
The structures of 4‐chloro‐3‐nitroaniline, C6H5ClN2O2, (I), and 4‐iodo‐3‐nitroaniline, C6H5IN2O2, (II), are isomorphs and both undergo continuous (second order) phase transitions at 237 and 200 K, respectively. The structures, as well as their phase transitions, have been studied by single‐crystal X‐ray diffraction, Raman spectroscopy and difference scanning calorimetry experiments. Both high‐temperature phases (293 K) show disorder of the nitro substituents, which are inclined towards the benzene‐ring planes at two different orientations. In the low‐temperature phases (120 K), both inclination angles are well maintained, while the disorder is removed. Concomitantly, the b axis doubles with respect to the room‐temperature cell. Each of the low‐temperature phases of (I) and (II) contains two pairs of independent molecules, where the molecules in each pair are related by noncrystallographic inversion centres. The molecules within each pair have the same absolute value of the inclination angle. The Flack parameter of the low‐temperature phases is very close to 0.5, indicating inversion twinning. This can be envisaged as stacking faults in the low‐temperature phases. It seems that competition between the primary amine–nitro N—H...O hydrogen bonds which form three‐centred hydrogen bonds is the reason for the disorder of the nitro groups, as well as for the phase transition in both (I) and (II). The backbones of the structures are formed by N—H...N hydrogen bonding of moderate strength which results in the graph‐set motif C(3). This graph‐set motif forms a zigzag chain parallel to the monoclinic b axis and is maintained in both the high‐ and the low‐temperature structures. The primary amine groups are pyramidal, with similar geometric values in all four determinations. The high‐temperature phase of (II) has been described previously [Garden et al. (2004). Acta Cryst. C 60 , o328–o330].  相似文献   

11.
Reactive isocyanate groups were protected and stabilized by the hydrophobic styrene segment and acquired high tolerance toward water. Copolymers containing isocyanate groups were synthesized by a radical copolymerization of 2‐propenyl isocyanate (2PI) and styrene (St). The stability of the obtained copolymers on water was examined to find that isocyanate groups were protected by the hydrophobic polystyrene segment and were stable on water and these isocyanates reacted with primary amines including amino acids to form urea selectively on water. Primary amines with a higher octanol‐water partition coefficient or smaller steric hindrance were more reactive to the isocyanate groups in the side chain of the copolymer. The protection of reactive isocyanate groups using the hydrophobic styrene segment did not give side products which are produced in the usual chemical protection/deprotection process. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1934–1940  相似文献   

12.
The radical copolymerization of chlorotrifluoroethylene (CTFE) with 3,3,4,4‐tetrafluoro‐4‐bromobut‐1‐ene (BTFB) initiated by tert‐butylperoxypivalate is presented. The microstructures of the obtained copolymers are determined by means of NMR spectroscopies and elemental analysis and show that random copolymers were obtained. A wide range of poly(CTFE‐co‐BTFB) copolymers is synthesized, containing from 17 to 89 mol % of CTFE. In all the cases, CTFE is the less reactive of both comonomers. Td10% values, ranging from 163 up to 359 °C, are dependent on the BTFB content. These variations of thermal property are attributed to the increase in the number of C‐H and C‐Br bonds breakdown when the BTFB molar percentage in the copolymer is higher. Tg values range from 19 to 39 °C and a decreasing trend is observed when increasing the amount of BTFB in the copolymer. This observation arises from the higher flexibility of the copolymer when increasing the number of fluorobrominated lateral chains. These original fluoropolymers bearing reactive pendant bromo groups are suitable candidates for various applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1714–1720  相似文献   

13.
The polymerization of α‐N‐(α′‐methylbenzyl) β‐ethyl itaconamate derived from racemic α‐methylbenzylamine (RS‐MBEI) by initiation with dimethyl 2,2′‐azobisisobutyrate (MAIB) was studied in methanol kinetically and with ESR spectroscopy. The overall activation energy of polymerization was calculated to be 47 kJ/mol, a very low value. The polymerization rate (Rp ) at 60 °C was expressed by Rp = k[MAIB]0.5±0.05[RS‐MBEI]2.9±0.1. The rate constants of propagation (kp ) and termination (kt ) were determined by ESR. kp was very low, ranging from 0.3 to 0.8 L/mol s, and increased with the monomer concentration, whereas kt (4–17 × l04 L/mol s) decreased with the monomer concentration. Such behaviors of kp and kt were responsible for the high dependence of Rp on the monomer concentration. Rp depended considerably on the solvent used. S‐MBEI, derived from (S)‐α‐methylbenzylamine, showed somewhat lower homopolymerizability than RS‐MBEI. The kp value of RS‐MBEI at 60 °C in benzene was 1.5 times that of S‐MBEI. This was explicable in terms of the different molecular associations of RS‐MBEI and S‐MBEI, as analyzed by 1H NMR. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4137–4146, 2000  相似文献   

14.
15.
Metal‐catalyzed living radical polymerization of methyl methacrylate initiated with N‐chloro amides (N‐chloro N‐ethyl propionamide, N‐chloro benzanilide, N‐chloro methylbenzamide, and N‐chloro acetanilide), lactams (N‐chloro caprolactam and N‐chloro 2‐pyrrolidinone), carbamates or urethanes (N‐chloro ethylcarbamate or N‐chlorourethane), imides (N‐chloro phtalimide, N‐chloro succinimide, trichloroisocyanuric acid, and N‐chloro saccharin) and catalyzed with the self‐regulated catalytic system Cu2S/2,2′‐bipyridine is reported. The initiation efficiency of these initiators is determined by their structure. Regardless of the initiator efficiency, in all cases, poly (methyl methacrylate) with narrow molecular weight distribution and functionalized chain‐ends was obtained. These new classes of initiators open new strategies for the functionalization of polymer chain‐ends and for the synthesis of complex architectures by graft copolymerization initiated from N‐chloro proteins, aliphatic, aromatic and semiaromatic polyamides, and polyurethanes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5283–5299, 2005  相似文献   

16.
Radical ring‐opening polymerization of 1,1‐dicyano‐2‐vinylcyclopropane 1 was performed in benzonitrile to find the corresponding homopolymer 2 soluble in organic solvents was successfully obtained while that in other solvents gave crosslinked and thus insoluble homopolymer. In addition, 1 underwent radical copolymerization with 1‐cyano‐1‐ester‐2‐vinylcyclopropanes 3 and 4 to afford the corresponding copolymers 7 and 8 . By increasing the content of the 1 ‐derived unit in the resulting copolymers, the solubility of the copolymers in organic solvents became lower and the residual weights at 600 °C and their glass transition temperatures became higher. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1723–1729  相似文献   

17.
Copper(0)‐mediated radical polymerization (single electron transfer‐living radical polymerization) is an efficient polymerization technique that allows control over the polymerization of acrylates, vinyl chloride and other monomers, yielding bromide terminated polymer. In this contribution, we investigate the evolution of the end‐group fidelity at very high conversion both in the presence and in the absence of initially added copper (II) bromide (CuBr2). High resolution electrospray‐ionization mass spectroscopy (ESI‐MS) allows determination of the precise chemical structure of the dead polymers formed during the polymerization to very high monomer conversion, including post polymerization conditions. Two different regimes can be identified via ESI‐MS analysis. During the polymerization, dead polymer results mainly from termination via disproportionation, whereas at very high conversion (or in the absence of monomer, that is, post‐polymerization), dead polymers are predominantly generated by chain transfer reactions (presumably to ligand). The addition of CuBr2 significantly reduces the extent of termination by both chain transfer and disproportionation, at very high monomer conversion and under post‐polymerization conditions, offering a convenient approach to maintaining high end‐group fidelity in Cu(0)‐mediated radical polymerization. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
“Radical‐controlled” oxidative polymerization of phenol (p‐1) by (1,4,7‐triisopropyl‐1,4,7‐triazacyclononane)copper(II) catalyst was performed and compared with that of 4‐phenoxyphenol (p‐2) in detail. Although the coupling selectivity for p‐1 seemed to be controlled by the catalyst, the C? C coupling, which was excluded completely for p‐2, occurred to some extent. The initial reaction rate of p‐1 was much smaller than that of p‐2, leading to the difference of polymerization behavior between p‐1 and p‐2. The rate‐determining step would be the coupling of controlled radicals species from the ESR measurement of the reaction mixture. The polymer resulting from p‐1 consisted mainly of phenylene oxide units, but had no crystallinity in contrast to the crystalline polymer from p‐2. However, the present polymer showed the highest thermal stability in the polymers obtained by oxidative polymerization of p‐1. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1955–1962, 2005  相似文献   

19.
Four nitroso esters were prepared by oxidation of 4,4‐dimethyl dihydro‐1,3‐oxazine or 4,4‐dimethyl‐2‐oxazoline with two equiv of m‐chloroperoxybenzoic acid. All of them can be applied in radical addition‐coupling polymerization to produce periodic polymer together with introduction of ester group at side chain. Compared with 2‐methyl‐2‐nitrosopropane, 2‐nitroso‐2‐methyl‐4‐acetoxypentane and 2‐methyl‐2‐nitrosopropyl hexanoate present good stability at high temperature up to 70 °C and can result polymer with high molecular weight. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 810–815  相似文献   

20.
The cobaloxime‐mediated catalytic‐chain‐transfer polymerization of styrene at 60 °C was studied with an emphasis on the effects of monomer purification and polymerization conditions. Commonly used purification methods, such as column chromatography and simple vacuum distillation, were not adequate for obtaining kinetic data to be used in mechanistic modeling. A purification regime involving inhibitor removal with basic alumina, followed by polymerization of the styrene in the presence of the cobaloxime and subsequent vacuum distillation, was found to be essential to this end. It was then possible to quantitatively investigate effects such as the initiator concentration and conversion dependencies of the apparent chain‐transfer constant that resulted from the occurrence of cobalt–carbon bond formation. A value of about 9 × 103 was found for the true chain‐transfer constant to cobaloxime boron fluoride, that is, its value in the absence of cobalt–carbon bond formation. Furthermore, previous predictions were confirmed: the measured chain‐transfer constant decreased with increasing initiator concentration and conversion. Finally, it was confirmed that the presence of light increased the amount of free Co(II) catalyst in agreement with other studies. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 752–765, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号