首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Body conforming orthogonal grids were generated using a fast hyperbolic method for aerofoils, and were used to solve the Navier–Stokes equation in the generalized orthogonal system for the first time for time accurate simulation of incompressible flow. For grid generation, the Beltrami equation and the definition equation for the orthogonality are solved using a finite difference method. The grids generated around aerofoils by this method have better orthogonality than the results published by earlier investigators. The Navier–Stokes equation at Reynolds numbers of 3000 and 35 000 for NACA 0012 and NACA 0015 respectively, have been solved as an application. The obtained results match quite well with the corresponding experimental results. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents an efficient numerical method for solving the unsteady Euler equations on stationary rectilinear grids. Boundary conditions on the surface of an airfoil are implemented by using their first-order expansions on the mean chord line. The method is not restricted to flows with small disturbances since there are no restrictions on the mean angle of attack of the airfoil. The mathematical formulation and the numerical implementation of the wall boundary conditions in a fully implicit time-accurate finite-volume Euler scheme are described. Unsteady transonic flows about an oscillating NACA 0012 airfoil are calculated. Computational results compare well with Euler solutions by the full boundary conditions on a body-fitted curvilinear grid and published experimental data. This study establishes the feasibility for computing unsteady fluid-structure interaction problems, where the use of a stationary rectilinear grid offers substantial advantages in saving computer time and program design since it does not require the generation and implementation of time-dependent body-fitted grids.  相似文献   

3.
    
A hybrid building‐block Cartesian grid and gridless method is presented to compute unsteady compressible flows for complex geometries. In this method, a Cartesian mesh based on a building‐block grid is used as a baseline mesh to cover the computational domain, while the boundary surfaces are represented using a set of gridless points. This hybrid method combines the efficiency of a Cartesian grid method and the flexibility of a gridless method for the complex geometries. The developed method is used to compute a number of test cases to validate the accuracy and efficiency of the method. The numerical results obtained indicate that the use of this hybrid method leads to a significant improvement in performance over its unstructured grid counterpart for the time‐accurate solution of the compressible Euler equations. An overall speed‐up factor from six to more than one order of magnitude and a saving in storage requirements up to one order of magnitude for all test cases in comparison with the unstructured grid method are demonstrated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A simple and robust method for solving hyperbolic conservation equations based on the adaptive wavelet-collocation method, which uses a dynamically adaptive grid, are presented. The method utilises natural ability of wavelet analysis to sense localised structures and is based on analysis of wavelet coefficients on the finest level of resolution to create a discontinuity locator function Φ. Using this function, an artificial viscous term is explicitly added in the needed regions using a localised numerical viscosity that ensures the positivity and TVD non-linear stability conditions. Once the wavelet coefficients on the finest level of resolution are below the error threshold parameter ?, the artificial viscosity is shut off and any remaining physical waves are free to propagate undamped. Multiple examples in one and two dimensions are presented to demonstrate the method's robustness, simplicity and ease of extending to more complex problems.  相似文献   

5.
6.
An all‐speed algorithm based on the SIMPLE pressure‐correction scheme and the ‘retarded‐density’ approach has been formulated and implemented within an unstructured grid, finite volume (FV) scheme for both incompressible and compressible flows, the latter involving interaction of shock waves. The collocated storage arrangement for all variables is adopted, and the checkerboard oscillations are eliminated by using a pressure‐weighted interpolation method, similar to that of Rhie and Chow [Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal 1983; 21 : 1525]. The solution accuracy is greatly enhanced when a higher‐order convection scheme combined with adaptive mesh refinement (AMR) are used. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
This article presents a numerical model that enables to solve on unstructured triangular meshes and with a high order of accuracy, Riemann problems that appear when solving hyperbolic systems. For this purpose, we use a MUSCL‐like procedure in a ‘cell‐vertex’ finite‐volume framework. In the first part of this procedure, we devise a four‐state bi‐dimensional HLL solver (HLL‐2D). This solver is based upon the Riemann problem generated at the barycenter of a triangular cell, from the surrounding cell‐averages. A new three‐wave model makes it possible to solve this problem, approximately. A first‐order version of the bi‐dimensional Riemann solver is then generated for discretizing the full compressible Euler equations. In the second part of the MUSCL procedure, we develop a polynomial reconstruction that uses all the surrounding numerical data of a given point, to give at best third‐order accuracy. The resulting over determined system is solved by using a least‐square methodology. To enforce monotonicity conditions into the polynomial interpolation, we use and adapt the monotonicity‐preserving limiter, initially devised by Barth (AIAA Paper 90‐0013, 1990). Numerical tests and comparisons with competing numerical methods enable to identify the salient features of the whole model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A straightforward moving grid finite element method is developed to solve the one-dimensional coupled system of non-linear partial differential equations (PDEs) governing two- and three-phase flow in porous media. The method combines features from a number of self-adaptive grid techniques. These techniques are the equidistribution, the moving grid finite element and the local grid refinement/coarsening methods. Two equidistribution criteria, based on solution gradient and curvature, are employed and nodal distributions are computed iterativcly. Using the developed approach, an intermingle-free nodal distribution is guaranteed. The method involves examination of a single representative gradient to facilitate the application of moving grid algorithms to solve a non-linear coupled set of PDEs and includes a feature to limit mass balance error during nodal redistribution. The finite element part of the developed algorithm is verified against an existing finite difference model. A numerical simulation example involving a single-front two-phase flow problem is presented to illustrate model performance. Additional simulation examples are given in Part 2 of this paper. These examples include single and double moving fronts in two- and three-phase flow systems incorporating source/sink terms. Simulation sensitivity to the moving grid parameters is also explored in Part 2.  相似文献   

9.
This paper presents numerical examples for the moving grid finite element algorithm derived in Part Ito solve the non-linear coupled set of PDEs governing immiscible multiphase flow in porous media in one dimension. Examples include single- and double-front simulations for two- and three-phase flow regimes and incorporating a mass sink. The modelling approach is shown to achieve significant savings in computation time and memory allocation when compared with fixed grid solutions of equivalent accuracy. This work includes sensitivity analyses for the parameters which are incorporated in the grid adaptation method, including the curvature weights, artificial viscosity and artificial repulsive force. It is found that the curvature weights are exponential functions of the negative ratio of the square root of the domain length to the number of discrete nodes. These weighting parameters are also shown to depend upon the shape of the front. On the basis of the examined simulations, it is recommended that artificial viscosity be neglected in the solution of the coupled non-linear set of PDEs governing multiphase flow in porous media. Similarly, use of a repulsive force is found to be unnecessary in simulations involving the migration of two liquid phases. For multiphase flows incorporating a gas phase it is recommended to use a non-zero value for the repulslive force to avoid development of an ill-conditioned nodal distribution matrix. An equation to evaluate the repulsive force under these circumstances is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号