首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adhesive properties of blends of high molecular weight poly(vinyl pyrrolidone) (PVP) and low molecular weight poly(ethylene glycol) (PEG) were systematically investigated with a probe test and correlated with their viscoelastic properties. The material parameters that were varied were the PEG content (31–41 wt %) and the hydration rate. The 36% PEG showed the best balance of properties for a pressure‐sensitive adhesive. At low debonding rates, the debonding took place through the formation of a fibrillar structure, whereas at high debonding rates, the debonding was brittle. This transition was attributed to the breakage and reformation of hydrogen bonds between PVP units and OH groups on PEG during the large strain of the polymer chains in elongation. This transition was observed, albeit shifted in frequency, for all three compositions, and the characteristic relaxation times of the hydrogen‐bonded network were estimated. A comparison between the tack properties of the adhesives and their linear viscoelastic properties showed a very strong decoupling between the small‐strain and large‐strain properties of the adhesive, which was indicative of a pronounced deviation from rubber elasticity in the behavior of the blends. This deviation, also seen during tensile tests, was attributed to the peculiar phase behavior of the blends. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2395–2409, 2002  相似文献   

2.
Relevant experiments are essential to clearly understand the role of various molecular (chemical structure, surface energy, composition), experimental (contact time, contact pressure, temperature) or topological (sample roughness and thickness) parameters, on the tack properties of pressure sensitive adhesives (PSA). The “mechano‐optical tack tester” (MOTT) is a novel device that we have developed to provide accurate measurements of both the contact area and the tack strength. The MOTT is designed to apply controlled contact pressures by mean of a quartz prism probe, for determined contact times, onto the surface of PSA samples. The probe is then pulled up at controlled rates while the tearing force (tack strength) and the contact area are plotted versus time. The tack energy is then calculated. Using the MOTT, the influence of various parameters (contact pressure, contact area, sample thickness, …) on the tack properties of PSA samples has been studied. The main result lies in the strong dependence of the tack energy on the sample thickness. This points out that the release energy is close to the interface rather than in the bulk of the PSA films, and is a function of the contact area. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1201–1208, 2000  相似文献   

3.
4.
Pressure‐sensitive adhesives (PSAs) are finding increasing applications in various areas of industry and medicine. PSAs are a special class of viscoelastic polymers that form strong adhesive joints with substrates of varying chemical nature under application of light external bonding pressures (1–10 Pa) over short periods of time (1–5 s). To be a PSA, a polymer should possess both high fluidity under applied bonding pressure, to form good adhesive contact, and high cohesive strength and elasticity, which are necessary for resistance to debonding stresses and for dissipation of mechanical energy at the stage of adhesive bond failure under detaching force. For rational design of novel PSAs, molecular insight into mechanisms of their adhesive behavior is necessary. As shown in this review, strength of PSA adhesive joints is controlled by a combination of diffusion, viscoelastic, and relaxation mechanisms. At the molecular level, strong adhesion is the result of a narrow balance between two generally conflicting properties: high cohesive strength and large free volume. These conflicting properties are difficult to combine in a single polymer material. Individually, high cohesive interaction energy and large free volume are necessary but insufficient prerequisites for PSA strength. Evident correlations are observed between the adhesive bond strengths of different PSAs, and their relaxation behaviors are described by longer relaxation times. Innovative PSAs with tailored properties can be produced by physical mixing of nonadhesive long‐ and short‐chain linear parent polymers, with groups at the two ends of the short chains complementary to the functional groups in the recurring units of the long chains. Although chemical composition and molecular structure of such innovative adhesives are unrelated to those of conventional PSAs, their mechanical properties and adhesive behaviors obey the same general laws, such as the Dahlquist's criterion of tack. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

5.
Three kinds of alkylimidazolium base room temperature ionic liquids (RTILs) were synthesized and their nano‐scale lubricant films were prepared on modified silicon wafers by dip‐coating method. The thicknesses of these films were measured and their relationship between thickness and solution concentration was obtained. Their surface morphologies were observed and contact angles of water on these films were determined. The adhesions and friction coefficients of these films were detected by contact mode AFM. As comparison, their macrotribological properties were evaluated on a UMT‐2MT tribo‐tester. It was found that, in microscale, 1‐hexyl‐3‐methyl‐imidazolium hexafluorophosphate performed the best tribological properties, while in macroscale, its tribological properties were similar with that of 1‐hexyl‐3‐methyl‐imidazolium tetrafluoroborate and better than that of 1‐hexyl‐3‐methyl‐imidazolium adipate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The solvent‐provoked formation and evolution of thin film buckling‐delamination on a compliant substrate have been studied. The film surface is observed by an optical microscope showing a remarkable dynamic buckling‐delamination development and a subsequent stable branched‐straight state. It is revealed that the initiation, propagation, and the resulting patterns of film buckles are strongly dependent on the solvent type, film stress, interfacial adhesion, and film thickness. The buckling could be controlled further by a reasonable chemical solvent configuration and used to provide useful information for the pattern creation on polymer systems in diverse fields, such as micro/nanofabrication and optics.  相似文献   

7.
The morphological structure of poly(3‐hexylthiophene) (P3HT) thin films deposited by both Matrix Assisted Pulsed Laser Evaporation (MAPLE) and solution spin‐casting methods are investigated. The MAPLE samples possessed a higher degree of disorder, with random orientations of polymer crystallites along the side‐chain stacking, π–π stacking, and conjugated backbone directions. Moreover, the average molecular orientations and relative degrees of crystallinity of MAPLE‐deposited polymer films are insensitive to the chemistries of the substrates onto which they were deposited; this is in stark contrast to the films prepared by the conventional spin‐casting technique. Despite the seemingly unfavorable molecular orientations and the highly disordered morphologies, the in‐plane charge carrier transport characteristics of the MAPLE samples are comparable to those of spin‐cast samples, exhibiting similar transport activation energies (56 vs. 54 meV) to those reported in the literature for high mobility polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 39–48  相似文献   

8.
Thin polymer films may undergo a wide variety of elastic instabilities that include global buckling modes, wrinkling and creasing of surfaces, and snapping transitions. Traditionally, these deformations have usually been avoided as they often represent a means of mechanical failure. However, a new trend has emerged in recent years in which buckling mechanics can be harnessed to endow materials with beneficial functions. For many such applications, it is desirable that such deformations happen reversibly and in response to well‐defined signals or changes in their environment. While significant progress has been made on understanding and exploiting each type of deformation in its own right, here we focus on recent advances in the control and application of stimuli‐responsive mechanical instabilities. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1441–1461  相似文献   

9.
Atomic force microscopy (AFM)/force curve measurements were used to study the photochemical process of UV‐treated (0, 10, 20, 30 and 60 min) organic thin films that were prepared from azobenzene and cinnamate side‐chain co‐grafted ladder‐like polysilsequioxanes (LPS). The morphological data of the thin films describe the changing process on the surface of the thin film. The statistical results of the adhesion force of the thin films further demonstrate the intermolecular characteristics of the thin films. A photosensitive thin film after UV exposure for 20 min would be a better material with a preferred orientation that can be used to make liquid‐crystal devices. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
A novel microbubble inflation method has been used to determine the creep compliance of poly(vinyl acetate) and polystyrene ultra‐thin films (13–300 nm thick) at temperatures from below to above the glass temperature. We present results that suggest that time‐temperature and time‐thickness superposition hold in the glassy relaxation regime. Although time‐temperature superposition is found for the entire response curve for each thickness, we also find that time‐thickness superposition fails as the long‐time compliance is approached. This effect occurs because of a strong stiffening as the film thickness decreases. We also show first evidence of stiffening in the glassy regime of free standing films of polystyrene. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1952–1965, 2008  相似文献   

11.
The thermo‐mechanical response of heat activated shape memory polymers (SMPs) has been investigated using a thermo‐viscoelastic finite element analysis that accounts for external and internal heat sources. SMPs can be thermally stimulated by external heat sources, such as temperature and surface heat flux, or from internal viscous heating. Viscous heating can significantly affect the response of SMP sheets by increasing the temperature during pre‐strain, which accelerates stress relaxation. This stress relaxation results in a slower shrinking rate when the SMP is reheated. Viscous heating also causes an increase in temperatures during unconstrained recovery. The predicted results elucidate how the coupled thermo‐mechanical loading conditions affect folding and unfolding of SMP sheets in response to localized heating in a hinged region. A parametric study of sheet thickness, hinge width, degree of pre‐strain, and hinge surface temperature is also conducted. The validated results can provide guidelines for the design of functional, self‐folding structures. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1207–1219  相似文献   

12.
Adhesion of dense linear polymer chains containing a small number of randomly distributed sticker groups (?X) to a solid substrate containing receptor groups (?Y) has been analyzed by a single‐chain scaling approach. An entanglement sink probability (ESP) model motivated by vector percolation explains the nonmonotonic influences of sticker concentration (?X), receptor concentration (?Y), and their interaction strength (χ) on the adhesion strength GIC of the polymer‐solid interface. The ESP model quantifies the degree of interdigitation between adsorbed and neighboring chains on the basis of the adsorbed chain domain with an extension of the scaling treatment of de Gennes. Here, the adsorbed chain domain changes thermodynamically with respect to the energy of interaction parameter, r = χ?X?Y. This model considers the situation of a blend consisting of a small volume fraction of adhesive molecules as a compatibilizer at the interface, where these molecules promote adhesion by adsorbing to the surface via sticker‐receptor interactions. The percolation model scales solely with r = χ?X?Y, and this parameter can be related to both the adhesive potential (GA) and the cohesive potential (GC). GA describes adhesive failure between adsorbed chains and the solid surface and linearly behaves as GAr = χ?X?Y. The cohesive strength between adsorbed and neighboring chains corresponds to GCr?0.5~?1.0 = (χ?X?Y)?0.5~?1.0. When the fracture stresses for cohesive and adhesive failure are equal, the model predicts maximum adhesion strength at an optimal value of r* = (χ?X?Y)*. Thus, for a given χ value, optimal values ? and ? exist for the sticker and receptor groups, above or below which the fracture energy will not be optimized. Alternatively, if the X‐Y interaction strength χ increases, then the number of sticker groups required to achieve the optimum strength decreases. Significantly, the optimum strength is not obtained when the surface is completely covered with receptor groups (?Y = 1) but is closer to 30%. For polybutadiene, the optimum value of r* was determined experimentally (Lee, I.; Wool, R. P. J Adhesion 2001, 75, 299), and typically ? ≈ 1–3%, ? ≈ 25–30%. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2343–2353, 2002  相似文献   

13.
Nanostructured multilayers constituted by alternate metallic (gold) and organic (alkyldithiol) layers, and grafted onto glass or silicon substrates are prepared and analysed. Such complex layers could be of interest as a new type of surfaces but also as localized dissipative zones particularly in the field of adhesion science. The formation and the structure of these model systems are examined using a number of techniques such as atomic force microscopy (AFM), wetting analysis (contact angles), X‐ray photoelectron spectroscopy (XPS) and conductivity measurements. It is shown that, in terms of electrical conductivity, gold layers exhibit a percolation transition from an insulating granular structure to a conductive worm‐like structure at a threshold thickness of about 5 nm. XPS (and wettability) analyses clearly indicate that the fractional coverage of the gold surface is about 30% with alkyldithiol and that these molecules are either grafted in a stand‐up position or in the form of a loop. Moreover, a partial electrical connection between two successive gold layers is observed, confirming that the confined organic layer of alkyldithiol between them is too loosely organized to play the role of an insulating barrier. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Thin 200‐nm epoxy–amine mixtures were cured on silicon wafers with different surface chemistry to quantify the effect of the chemistry on the glass transition temperature evolution in ultra‐thin thermosetting films. Two surface treatments were investigated: the first one only consisted in the activation of the silanols groups at the silicon surface, whereas the second one consisted in the grafting 3‐aminopropyltrimethoxysilane (APTMS) monolayer on the silicon wafers. The epoxy films were deposited on these chemistry modified wafers by spin coating a toluene solution of DGEBA–amine mixture at stoichiometric ratio. The same cure processing was used for both samples. Thin films were analysed not only using microthermal and thermomechanical analysis to determine the relaxation transitions temperatures of these films but also using FTIR in infrared reflection absorption spectroscopy mode to determine the curing rate of these networks. It was found that all these thin films showed two different glass transitions, the first one at 96 °C and was independent of the surface treatments, whereas the second one increasing from 142 °C for the oxidised wafers surface to 167 °C for the aminosilane grafted on the silicon wafer. The substrate chemistry extent on the film network structure, the interfacial bonds and interactions are discussed. This work also illustrates the interest in using microthermal analysis to obtain relevant temperature glass transition of thin film at sub‐micrometre scale, strongly dependant of local structure and chemistry composition. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
To develop a novel temperature‐sensitive paint, methacrylamide monomers bearing Rhodamine B dye (two regioisomers, 3a and 3b ) were synthesized and polymerized with isobutyl methacrylate and 2,2,2‐trifluoroethyl methacrylate to afford Rhodamine B‐pendant polymers 4a and 4b . The methacrylamide monomers 3a and 3b showed photophysical properties almost identical with those of Rhodamine B. The temperature sensitivity of the luminescence intensity of 3a and 3b was also similar to that of Rhodamine B. The polymers 4a and 4b have excellent solubility in nonpolar organic solvents and are suitable for application as paint. Films of polymers 4a and 4b showed temperature‐dependent luminescence, which is applicable for temperature‐sensing. The temperature sensitivity of the film of 4a was estimated to be ?0.37% °C?1, and was independent of pressure. The film of 4b showed higher temperature sensitivity, but its temperature sensitivity was slightly pressure‐dependent. Hence, polymer 4a is expected to be superior for practical use in paints having temperature‐sensing functionality. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2876–2885, 2007  相似文献   

16.
Tin oxide (SnOx) has been widely used for the fabrication of transparent and flexible devices because of its excellent optical and electronic properties. In this work, we established a methodology for the synthesis of SnOx thin films with p‐type and n‐type tunable conductivity by direct currecnt (DC) magnetron sputtering. The SnOx thin films changed from p‐type to n‐type by increasing the relative oxygen partial pressure (ppO2) from 4.8% to 18.5% and by varying the working pressure between 1.8 and 2.5 mTorr. The SnOx thin films were annealed at 160°C, 180°C, and 200°C for 30 min to promote the formation of the desired crystalline structures. At the annealing temperature of 180°C in air ambient, the SnOx thin films showed a tetragonal structure with Sn traces. Having found the optimal conditions, we deposited both types of SnOx thin films with the same tetragonal structure and similar chemical stoichiometry. Also, the conditions to obtain thin films with the highest mobility values for p‐type (1.10 cm2/Vs) and n‐type (22.20 cm2/Vs) were used for fabricating the device. Finally, the implementation of a SnOx‐based p–n diode was demonstrated using transparent SnOx thin films developed in this work, illustrating their potential use in transparent electronics.  相似文献   

17.
Resonant soft X‐ray reflectivity (RSoXR) has been used to quantify the layer thicknesses and the interfacial widths of a single, complex thin film with three polymeric layers supported on an inorganic substrate. By adjusting the photon energy, the sensitivity to particular interfaces within the trilayer can be selectively enhanced. The results significantly improve and broaden the capabilities of RSoXR, which has previously only been demonstrated and used for bilayers on silicon substrates. The capability of RSoXR to characterize polymer trilayers was not readily predictable from prior bilayer results, as the RSoXR characterization of bilayers benefits from a strong X‐ray reflection from the substrate that serves as a reference beam with which the reflections from the other interfaces interfere with. The impact of having the capability to investigate trilayers is exemplified by discussing the utility of RSoXR to characterize organic electronic light emitting multilayers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1291–1299, 2009  相似文献   

18.
Two series of butyl acrylate (BA)/acrylic acid (AA)/2‐hydroxy ethyl methacrylate latexes were produced via starved seeded semi‐batch emulsion polymerization. The first series, five latexes with gel contents ranging from 0 to 75 wt.‐%, were generated by varying the amount of chain transfer agent (CTA, n‐dodecyl mercaptan) in the absence of cross‐linker. The second series, two latexes with gel contents of 49 and 74 wt.‐%, were obtained by manipulating the amount of CTA in the presence of a constant cross‐linker (allyl methacrylate) concentration. Latexes with similar gel contents, one from each series, were compared with respect to their microstructure, viscoelastic properties and pressure‐sensitive adhesive performance. At similar gel contents, latexes obtained in the absence of cross‐linker had larger sol polymer molecular weight ($\overline {M} _{{\rm w}} $ ) and molecular weight between cross‐linking points (Mc), compared to the latexes generated using both CTA and cross‐linker. The different microstructures of latexes with similar gel contents resulted in significantly different viscoelastic properties and shear strength of the pressure‐sensitive adhesive films cast from the latexes.

  相似文献   


19.
A simple pressure‐sensitive adhesion (PSA) system incorporating noncovalent interaction between thymine and adenine is presented. A copolymer having thymine moieties is combined with a low‐molecular‐weight bifunctional adenine cross‐linker. Molecular interactions caused by multiple hydrogen bonds between the thymine and adenine units are evaluated by FT‐IR spectral measurement. Mechanical properties of the PSA are examined by stress–strain curves and dynamic mechanical analysis. As the number of adenine cross‐linkers increases, Young's modulus increases from 0.24 to 3.0 MPa, and the glass transition temperature increases. Furthermore, it is found that the PSAs have adequate adhesive property from their shear strength test. Heat treatment at 80 °C is effective for reinforcement because of interchange of the hydrogen bonds. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1332‐1338  相似文献   

20.
The synthesis of silicon‐based polymer films was studied by excimer laser (248 nm)‐induced photo‐reaction of phenylsilane and methyl‐phenylsilane at reduced pressure. IR and UV–VIS results showed that the films were composed of Si–C network structures with phenyl rings. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号