首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Reactivity of Dinuclear Platina‐β‐diketones with Phosphines: Diacetylplatinum(II) Complexes and Mononuclear Platina‐β‐diketones Addition of mono‐ and bidentate phosphines or of AsPh3 to the platina‐β‐diketone [Pt2{(COMe)2H}2(μ‐Cl)2] ( 1 ) followed by the addition of NaOMe at ?70 °C resulted in the formation of diacetyl platinum(II) complexes cis‐[Pt(COMe)2L2] (L = PPh3, 2a ; P(4‐FC6H4)3, 2b ; PPh2(4‐py), 2c ; PMePh2, 2d ; AsPh3, 2d ) and [Pt(COMe)2(L??L)] (L??L = dppe, 3b ; dppp, 3c ), respectively. The analogous reaction with dppm afforded the dinuclear complex cis‐[{Pt(COMe)2}2(μ‐dppm)2] ( 4 ) that reacted in boiling acetone yielding [Pt(COMe)2(dppm)] ( 3a ). The reactions 1 → 2 / 3 were found to proceed via thermally highly unstable cationic mononuclear platina‐β‐diketone intermediates [Pt{(COMe)2H}L2]+ and [Pt{(COMe)2H}(L??L)]+, respectively, that could be isolated as chlorides for L??L = dppe ( 5a ) and dppp ( 5b ). The reversibility of the deprotonation of type 5 complexes with NaOMe yielding type 3 complexes was shown by the protonation of the diacetyl complex 3b with HBF4 yielding the platina‐β‐diketone [Pt{(COMe)2H}(dppe)](BF4) ( 5c ). All compounds were fully characterized by means of NMR and IR spectroscopies, and microanalyses. X‐ray diffraction analysis was performed for the complex cis‐[Pt(COMe)2(PPh3)2]·H2O·CHCl3 ( 2a ·H2O·CHCl3).  相似文献   

2.
The study was focused on the structure–activity relationship of some newly synthesized hexacoordinated dimethyltin(IV) complexes of fluorinated β‐diketone/β‐diketones and sterically congested heterocyclic β‐diketones. These complexes were screened for their antibacterial activity against a Gram‐negative bacterium (Pseudomonas aeruginosa) and Gram‐positive bacteria (Streptomyces griseus, Staphylococcus aureus, Bacillus subtilis) and the results were compared with those of a standard antibacterial drug. Some of the complexes were also screened for their antifungal activity against various fungi (Aspergillus niger, A. flavus, Trichoderma viride, Fusarium oxysporum) and were found to be active. These new hexacoordinated complexes of dimethyltin(IV) were generated by reactions of dimethyltin(IV) dichloride and sodium salts of fluorinated β‐diketone/β‐diketones and sterically congested heterocyclic β‐diketones in 1:1:1 molar ratio in refluxing dry benzene. Plausible structures of these complexes were suggested with the aid of physicochemical and spectroscopic studies. 119Sn NMR spectral data revealed the presence of a hexacoordinated tin centre in these dimethyltin(IV) complexes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The platina‐β‐diketone [Pt2{(COMe)2H}2(µ‐Cl)2] ( 1 ) was found to react with monodentate phosphines to yield acetyl(chloro)platinum(II) complexes trans‐[Pt(COMe)Cl(PR3)2] (PR3 = PPh3, 2a ; P(4‐FC6H4)3, 2b ; PMePh2, 2c ; PMe2Ph, 2d ; P(n‐Bu)3, 2e ; P(o‐tol)3, 2f ; P(m‐tol)3, 2g ; P(p‐tol)3, 2h ). In the reaction with P(o‐tol)3 the methyl(carbonyl)platinum(II) complex [Pt(Me)Cl(CO){P(o‐tol)3}] ( 3a ) was found to be an intermediate. On the other hand, treating 1 with P(C6F5)3 led to the formation of [Pt(Me)Cl(CO){P(C6F5)3}] ( 3b ), even in excess of the phosphine. Phosphine ligands with a lower donor capability in complexes 2 and the arsine ligand in trans‐[Pt(COMe)Cl(AsPh3)2] ( 2i ) proved to be subject to substitution by stronger donating phosphine ligands, thus forming complexes trans‐[Pt(COMe)Cl(L)L′] (L/L′ = AsPh3/PPh3, 4a ; PPh3/P(n‐Bu)3, 4b ) and cis‐[Pt(COMe)Cl(dppe)] ( 4c ). Furthermore, in boiling benzene, complexes 2a – 2c and 2i underwent decarbonylation yielding quantitatively methyl(chloro)platinum(II) complexes trans‐[Pt(Me)Cl(L)2] (L = PPh3, 5a ; P(4‐FC6H4)3, 5b ; PMePh2, 5c ; AsPh3, 5d ). The identities of all complexes were confirmed by 1H, 13C and 31P NMR spectroscopy. Single‐crystal X‐ray diffraction analyses of 2a ·2CHCl3, 2f and 5b showed that the platinum atom is square‐planar coordinated by two phosphine ligands (PPh3, 2a ; P(o‐tol)3, 2f ; P(4F‐C6H4)3, 5b ) in mutual trans position as well as by an acetyl ligand ( 2a, 2f ) and a methyl ligand ( 5b ), respectively, trans to a chloro ligand. Single‐crystal X‐ray diffraction analysis of 3b exhibited a square‐planar platinum complex with the two π‐acceptor ligands CO and P(C6F5)3 in mutual cis position (configuration index: SP‐4‐3). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
A set of pentacoordinated dimethyltin(IV) complexes of flexible N‐protected amino acids and fluorinated β‐diketone/β‐diketones was screened for their antibacterial activity against Pseudomonas aeruginosa , Staphylococcus aureus and Streptomyces griseus . These pentacoordinated complexes of the type Me2SnAB (where : R = CH(CH3)C2H5, A1H; CH2CH(CH3)2, A2H; CH(CH3)2, A3H; CH2C6H5, A4H; and BH = R'C(O)CH2C(O)R″: R′ = C6H5, R″ = CF3, B1H; R′ = R″ = CH3, B2H; R′ = C6H5, R″ = CH3, B3H; R′ = R″ = C6H5, B4H) were generated by the reactions of dimethyltin(IV) dichloride with sodium salts of flexible N‐protected amino acids (ANa) and fluorinated β‐diketone/β‐diketones (BNa) in 1:1:1 molar ratio in refluxing dry benzene solution. Plausible structures of these complexes were elucidated on the basis of physicochemical and spectral studies. 119Sn NMR spectral data revealed the presence of pentacoordinated tin centres in these dimethyltin(IV) complexes.  相似文献   

5.
The monomeric β‐diketiminate zinc complex (Mes)NacNacZnMe 1 (MesNacNac = {[2,6‐(2,4,6‐Me3‐C6H2)N(Me)C)]2CH}) was obtained in almost quantitative yield from the reaction of ZnMe2 with (Mes)NacNacH. Reaction of 1 with either Me3NHCl or a solution of HCl in Et2O yielded (Mes)NacNacZnCl 2 , whereas (Mes)NacNacZnI 3 was obtained from the reaction of 1 with I2. 1 – 3 were characterized by elemental analyses, mass and multinuclear (1H, 13C{1H}) NMR spectroscopy, 3·THF also by single crystal X‐ray analysis.  相似文献   

6.
Compounds of type [MX2(Hpben)] [M = Pd (X = Cl), Pt (X = Cl, I); Hpben = 2‐(2′‐pyridyl)benzimidazole] were prepared and characterized, and the structures of the Pt derivatives were determined by X‐ray crystallography. The crystals of [PtI2(Hpben)] consist of discrete units in which the Pt atom is coordinated to two iodine atoms and to pyridine and imidazole N atoms in a distorted square planar arrangement. The structure of the chloro derivative is similar, except that the [PtCl2(Hpben)] monomers are hydrogen‐bonded in zig‐zag chains. In assays of the interactions of the Pd and Pt chloro compounds with DNA, and of their in vitro cytotoxic activity against human cervical carcinoma cells (HeLa‐229), human ovarian carcinoma cells (A2780) and a cisplatin‐resistant mutant A2780 line (A2780cis), the only activity observed was modest cytotoxicity of the Pd derivative for A2780.  相似文献   

7.
The effect of fluorinated/non‐fluorinated β‐diketones and side‐chain branching of N‐protected amino acids on the antibacterial potential of new heptacoordinated monobutyltin(IV) complexes was investigated. New heptacoordinated monobutyltin(IV) complexes having the general formulae BuSn(A)2B and BuSnA(B)2 [where AH = (1,3‐dihydro‐1,3‐dioxo‐α‐(substituted)‐2H ‐isoindole‐2‐acetic acids, N‐protected amino acids), R =  CH(CH3)CH2CH3: A1H; R =  CH(CH3)2: A2H; and BH = R'COCH2COR″ (β‐diketones), R′ = R″ =  CH3: B1H; R′ =  CH3, R″ =  C6H5: B2H; R′ =  CF3, R″ =  C6H5: B3H] were synthesized. Complexes BuSn(A)2B and BuSnA(B)2 were generated by the reaction of sodium salts of the ligands AH and BH with BuSnCl3 in 2:1:1 and 1:2:1 molar ratios, respectively. These newly generated complexes were characterized in physicochemical and spectroscopic studies. These complexes contain heptacoordinated tin centres as revealed by 119Sn NMR chemical shift values. Some of the newly generated complexes and their corresponding ligands were screened for their antibacterial activity to study the structure–activity relationship.  相似文献   

8.
The stoichiometric reaction of copper(II) hydroxycarbonate, iminodiacetic acid (H2IDA = HN(CH2CO2H)2) and α‐picolinamide (pya) in water yields crystalline samples of (α‐picolinamide)(iminodiacetato)copper(II) dihydrate, [Cu(IDA)(pya)] · 2 H2O ( 1 ). The compound was characterised by thermal (TG analysis with FT‐IR study of the evolved gasses), spectral (IR, electronic and ESR spectra), magnetic and single crystal X‐ray diffraction methods. It crystallises in the triclinic system, space group P1, a = 8.8737(4), b = 10.23203(5), c = 15.7167(11) Å, α = 77.61(1)°, β = 103.89(1)°, γ = 80.32(1)°, Z = 4, final R1 = 0.056. The asymmetric unit contains two crystallographic independent molecules but chemically very similar ones. The CuII atom exhibits a square base pyramidal coordination (type 4 + 1). pya acts as N,O‐bidentate ligand supplying two among the four closest donor atoms of the metal [averaged bond distances (Å): Cu–N = 1.982(2), Cu–O(amide) = 1.972(2)]. IDA plays a N,O,O′‐terdentate chelating role [averaged bond distances (Å): Cu–N = 2.004(3), Cu–O = 1.941(2) and Cu–O = 2.242(2)]. The coordinating behaviour of pya in 1 is discussed on the basis of its N,O‐bidentate chelating role and the preference of the ‘Cu‐iminodiacetato' moiety [Cu(IDA)] to link the N‐heterocyclic donor of pya in trans versus the Cu–N(IDA) bond. Consistently the ligand pya is able to impose a fac‐chelating configuration to IDA one around the copper(II) as previously has been reported to mixed‐ligand complexes having a 1/1/2 CuII/IDA/N(heterocyclic) donor ratio or a closely related 1/1/1/1 CuII/IDA/N(heterocyclic)/N(aliphatic) one.  相似文献   

9.
Three new μ‐oxamido‐bridged heterodinuclear copper (II)‐chromium (III) complexes formulated [Cu(Me2oxpn)Cr‐(L)2](NO3)3, where Me2oxpn denotes N,N'‐bis(3‐amino‐2, 2‐dimethylpropyl)oxamido dianion and L represents 5‐methyl‐1,10‐phenanthroline (Mephen), 4,7‐diphenyl‐1,10‐phenanthroline (Ph2phen) or 2,2′‐bipyridine (bpy), have been synthesized and characterized by elemental analyses, IR and electronic spectral studies, magnetic moments of room‐temperature and molar conductivity measurements. It is proposed that these complexes have oxamido‐bridged structures consisting of planar copper (II) and octahedral chromium (III) ions. The variable temperature magnetic susceptibilities (4.2–300 K) of complexes [Cu(Me2oxpn)Cr(Ph2phen)2](NO3)3 (1) and [Cu(Me2oxpn)Cr(Mephen)2] (NO3)3 (2) were further measured and studied, demonstrating the ferromagnetic interaction between the adjacent chromium (III) and copper (II) ions through the oxamido‐bridge in both complexes 1 and 2. Based on the spin Hamiltonian, ? = ‐ 2J?1 · ?2, the exchange integrals J were evaluated as + 21.5 an?1 for 1 and + 22.8 cm?1 for 2.  相似文献   

10.
The crystal structure of Pt6Cl12 (β‐PtCl2) was redetermined ( ah = 13.126Å, ch = 8.666Å, Z = 3; arh = 8.110Å, α = 108.04°; 367 hkl, R = 0.032). As has been shown earlier, the structure is in principle a hierarchical variant of the cubic structure type of tungsten (bcc), which atoms are replaced by the hexameric Pt6Cl12 molecules. Due to the 60° rotation of the cuboctahedral clusters about one of the trigonal axes, the symmetry is reduced from to ( ). The molecule Pt6Cl12 shows the (trigonally elongated) structure of the classic M6X12 cluster compounds with (distorted) square‐planar PtCl4 fragments, however without metal‐metal bonds. The Pt atoms are shifted outside the Cl12 cuboctahedron by Δ = +0.046Å ( (Pt—Cl) = 2.315Å; (Pt—Pt) = 3.339Å). The scalar relativistic DFT calculations results in the full symmetry for the optimized structure of the isolated molecule with d(Pt—Cl) = 2.381Å, d(Pt—Pt) = 3.468Å and Δ = +0.072Å. The electron distribution of the Pt‐Pt antibonding HOMO exhibits an outwards‐directed asymmetry perpendicular to the PtCl4 fragments, that plays the decisive role for the cluster packing in the crystal. A comparative study of the Electron Localization Function with the hypothetical trans‐(Nb2Zr4)Cl12 molecule shows the distinct differences between Pt6Cl12 and clusters with metal‐metal bonding. Due to the characteristic electronic structure, the crystal structure of Pt6Cl12 in space group is an optimal one, which results from comparison with rhombohedral Zr6I12 and a cubic bcc arrangement.  相似文献   

11.
The γ‐brass type phase Pt2Zn11—δ (0.2 < δ < 0.3) was prepared by reaction of the elements in evacuated silica ampoules. The structures of crystals grown in the presence of excess zinc or alternatively excess platinum were determined from single crystal X‐ray diffraction intensities and confirmed by Rietveld profile fits. Pt2Zn10.72(1) crystallizes in the space group I4¯3m, a = 908.55(4) pm, Z = 4. The structure refinement converged at RF = 0.0302 for Io > 2σ (Io) for 293 symmetrically independent intensi ties and 19 variables. The structure consists of a 26 atom cluster which is comprised of four crystallographically distinct atoms. The atoms Zn(1), Pt(1), Zn(2) and Zn(3) form an inner tetrahedron IT, an outer tetrahedron OT, an octahedron OH, and a distorted cuboctahedron CO respectively. About 14 % of the Zn(1) sites are unoccupied. Pt2Zn10.73 melts at 1136(2) K. It is a moderate metallic conductor (ρ298 = 0.2—0.9 mΩ cm) whose magnetic properties (χmol = —4.6 10—10 to —5.4 10—10 m3 mol—1) are dominated by the core diamagnetism of its components.  相似文献   

12.
The η2‐thio‐indium complexes [In(η2‐thio)3] (thio = S2CNC5H10, 2 ; SNC4H4, (pyridine‐2‐thionate, pyS, 3 ) and [In(η2‐pyS)22‐acac)], 4 , (acac: acetylacetonate) are prepared by reacting the tris(η2‐acac)indium complex [In(η2‐acac)3], 1 with HS2CNC5H10, pySH, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively. All of these complexes are identified by spectroscopic methods and complexes 2 and 3 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 : space group, C2/c with a = 13.5489(8) Å, b = 12.1821(7) Å, c = 16.0893(10) Å, β = 101.654(1)°, V = 2600.9(3) Å3, and Z = 4. The structure was refined to R = 0.033 and Rw = 0.086; Crystal data for 3 : space group, P21 with a = 8.8064 (6) Å, b = 11.7047 (8) Å, c = 9.4046 (7) Å, β = 114.78 (1)°, V = 880.13(11) Å3, and Z = 2. The structure was refined to R = 0.030 and Rw = 0.061. The geometry around the metal atom of the two complexes is a trigonal prismatic coordination. The piperidinyldithiocarbamate and pyridine‐2‐thionate ligands, respectively, coordinate to the indium metal center through the two sulfur atoms and one sulfur and one nitrogen atoms, respectively. The short C‐N bond length in the range of 1.322(4)–1.381(6) Å in 2 and C‐S bond length in the range of 1.715(2)–1.753(6) Å in 2 and 3 , respectively, indicate considerable partial double bond character.  相似文献   

13.
The preparation and spectroscopic and structural characterization of three ZnII complexes with bis[N‐(2,6‐dimethylphenyl)imine]acenaphthene, L1, and with bis[N‐(2‐ethylphenyl)imine]acenaphthene, L2, are decribed herein. Two of the complexes were prepared from ZnCl2 and the third from Zn(NCS)2. One‐pot reaction techniques were used, leading to high yields. The complexes were characterized by microanalysis, IR and 1H NMR spectroscopy, and single‐crystal X‐ray diffraction. The structures of the complexes are significantly different, with the chloride‐containing species forming distorted tetrahedra around the metal, whereas its thiocyanate analog is dimeric, with each metal at the center of a distorted square pyramid, with bridging and terminal [SCN] ligands.  相似文献   

14.
β‐Diimine zinc dichloride complexes [CH2{C(Me)NAr}2]ZnCl2 [Ar = Mes ( 1 ), Dipp ( 2 )] were obtained from the reactions of ZnCl2 with the corresponding β‐iminoamines [ArN(H)C(Me)CHC(Me)NAr]. Complexes 1 and 2 were characterized by multinuclear NMR (1H, 13C) and IR spectroscopy, elemental analyses as well as by single‐crystal X‐ray diffraction. The energy differences between the enamine‐imine tautomers of the β‐iminoamines were quantified by quantum chemical calculations.  相似文献   

15.
A simple, efficient and eco‐friendly procedure has been developed using Cu(II) immobilized on guanidinated epibromohydrin‐functionalized γ‐Fe2O3@TiO2 (γ‐Fe2O3@TiO2‐EG‐Cu(II)) for the synthesis of 2,4,5‐trisubstituted and 1,2,4,5‐tetrasubstituted imidazoles, via the condensation reactions of various aldehydes with benzil and ammonium acetate or ammonium acetate and amines, under solvent‐free conditions. High‐resolution transmission electron microscopy analysis of this catalyst clearly affirmed the formation of a γ‐Fe2O3 core and a TiO2 shell, with mean sizes of about 10–20 and 5–10 nm, respectively. These data were in very good agreement with X‐ray crystallographic measurements (13 and 7 nm). Moreover, magnetization measurements revealed that both γ‐Fe2O3@TiO2 and γ‐Fe2O3@TiO2‐EG‐Cu(II) had superparamagnetic behaviour with saturation magnetization of 23.79 and 22.12 emu g?1, respectively. γ‐Fe2O3@TiO2‐EG‐Cu(II) was found to be a green and highly efficient nanocatalyst, which could be easily handled, recovered and reused several times without significant loss of its activity. The scope of the presented methodology is quite broad; a variety of aldehydes as well as amines have been shown to be viable substrates. A mechanism for the cyclocondensation reaction has also been proposed.  相似文献   

16.
A series of β‐bromoketones and β‐chloroketones were synthesized by the addition reactions of α,β‐unsaturated ketones under BX3 (X = Br, Cl) and ethylene glycol reaction system. The α,β‐unsaturated ester also was successfully converted to its corresponding β‐bromoester under the reaction condition.  相似文献   

17.
The tris‐bidentate complex [Ni(C12H8N2)2(CO3)] was synthesized by the reaction of Na2CO3, 1,10‐phenanthroline (phen = C12H8N2) and NiSO4 · 6 H2O in the presence of succinic acid in a CH3OH–H2O solution. The compound crystallizes as heptahydrate. The crystal structure (monoclinic, P21/c (no. 14), a = 9.897(1), b = 26.384(2), c = 10.582(1) Å, β = 105.87(1)°, Z = 4, R = 0.0505, wR2 = 0.1029 for 3166 observed reflections (F ≥ 2σ(F ) out of 6100 unique reflections) consists of hydrogen bonded water molecules and [Ni(phen)2(CO3)] complex molecules. The Ni atoms are sixfold octahedrally coordinated by the four N atoms of two bidentate chelating phen ligands and by two O atoms of the bidentate chelating carbonate group with d(Ni–N) = 2.092–2.100 Å, d(Ni–O) = 2.051, 2.079 Å. The complex molecules are stacked into 2D corrugated layers parallel to (010) via two types of intermolecular π‐π stacking interactions. One occurs between two quinoline rings of neighboring phen ligands at the distance of 3.63 Å in [010] direction and the other results from 1D π‐π stacking interactions through partially covered phen rings at alternative distances of 3.26 Å and 3.33 Å in [001] direction. The water molecules are sandwiched between 2D layers.  相似文献   

18.
Reactions of the thiocarbamoyl‐molybdenum complex [Mo(CO)22‐SCNMe2)(PPh3)2Cl] 1 , and ammonium diethyldithiophosphate, NH4S2P(OEt)2, and potassium tris(pyrazoyl‐1‐yl)borate, KTp, in dichloromethane at room temperature yielded the seven coordinated diethyldithiophosphate thiocarbamoyl‐molybdenum complexe [Mo(CO)22‐S2P(OEt)2}(η2‐SCNMe2)(PPh3)] β‐3 , and tris(pyrazoyl‐1‐yl)borate thiocabamoyl‐molybdenum complex [Mo(CO)23‐Tp)(η2‐SCNMe2)(PPh3)] 4 , respectively. The geometry around the metal atom of compounds β‐3 and 4 are capped octahedrons. The α‐ and β‐isomers are defined to the dithio‐ligand and one of the carbonyl ligands in the trans position in former and two carbonyl ligands in the trans position in later. The thiocabamoyl and diethyldithiophosphate or tris(pyrazoyl‐1‐yl)borate ligands coordinate to the molybdenum metal center through the carbon and sulfur and two sulfur atoms, or three nitrogen atoms, respectively. Complexes β‐3 and 4 are characterized by X‐ray diffraction analyses.  相似文献   

19.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes XXI The Influence of the PR3 Ligands on Formation and Properties of the Phosphinophosphinidene Complexes [{η2tBu2P–P}Pt(PR3)2] and [{η2tBu2P1–P2}Pt(P3R3)(P4R′3)] (R3P)2PtCl2 and C2H4 yield the compounds [{η2‐C2H4}Pt(PR3)2] (PR3 = PMe3, PEt3, PPhEt2, PPh2Et, PPh2Me, PPh2iPr, PPh2tBu and P(p‐Tol)3); which react with tBu2P–P=PMetBu2 to give the phosphinophosphinidene complexes [{η2tBu2P–P}Pt(PMe3)2], [{η2tBu2P–P}Pt(PEt3)2], [{η2tBu2P–P}Pt(PPhEt2)2], [{η2tBu2P–P}Pt(PPh2Et)2], [{η2tBu2P–P}Pt(PPh2Me)2], [{η2tBu2P–P}Pt(PPh2iPr], [{η2tBu2P–P}Pt(PPh2tBu)2] and [{η2tBu2P–P}Pt(P(p‐Tol)3)2]. [{η2tBu2P–P}Pt(PPh3)2] reacts with PMe3 and PEt3 as well as with tBu2PMe, PiPr3 and P(c‐Hex)3 by substituting one PPh3 ligand to give [{η2tBu2P1–P2}Pt(P3Me3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3Ph3)(P4Me3)], [{η2tBu2P1–P2}Pt(P3Et3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3MetBu2)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3iPr3)(P4Ph3)] and [{η2tBu2P1–P2}Pt(P3(c‐Hex)3)(P4Ph3)]. With tBu2PMe, [{η2tBu2P–P}Pt(P(p‐Tol)3)2] forms [{η2tBu2P1–P2}Pt(P3MetBu2)(P4(p‐Tol)3)]. The NMR data of the compounds are given and discussed with respect to the influence of the PR3 ligands.  相似文献   

20.
A series of bis(β‐diketonato)tin compounds have been systematically synthesized and examined as precursors for chemical vapor deposition of SnO2 thin films. These complexes were characterized by elemental analyses and NMR, IR and mass spectroscopic methods. X‐ray single‐crystal determination of Sn(tfac)2 reveals that the complex possesses a distorted trigonal bipyramidal structure. The SnO2 films can be deposited on the substrates such as silicon, titanium nitride, and glass by using Sn(hfac)2, Sn(tfac)2 and Sn(acac)2 as CVD precursors at deposition temperatures of 300‐600°C with a carrier gas of O2. The deposition rates range from 20 to 600 Å/min. Deposited films have been characterized by XRD, SEM, AFM, AES and AAS analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号