首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The effect of polymer–filler interaction on solvent swelling and dynamic mechanical properties of the sol–gel derived acrylic rubber (ACM)/silica, epoxidized natural rubber (ENR)/silica, and poly (vinyl alcohol) (PVA)/silica hybrid nanocomposites has been described for the first time. Tetraethoxysilane (TEOS) at three different concentrations (10, 30, and 50 wt %) was used as the precursor for in situ silica generation. Equilibrium swelling of the hybrid nanocomposites in respective solvents at ambient condition showed highest volume fraction of the polymer in the swollen gel in PVA/silica system and least in ACM/silica, with ENR/silica recording an intermediate value. The Kraus constant (C) also followed a similar trend. In dynamic mechanical analysis, the storage modulus dropped at higher strain (>1%), which indicated disengagement of polymer segments from the filler surfaces. This drop was maximum in ACM/silica, intermediate in ENR/silica, and minimum in PVA/silica, both at 50 and 70 °C. The drop in modulus with theoretical volume fraction of silica (ϕ) was interpreted with the help of a Power law model ΔE′ = a1ϕ, where a1 was a constant and b1 was primarily a filler attachment parameter. Strain dependence of loss modulus was observed in ACM/silica hybrid nanocomposites, while ENR/silica and PVA/silica nanocomposites showed almost strain‐independent behavior. The storage modulus showed sharp increase with increasing frequency in ACM/silica system, while that was lower in both ENR/silica (at higher frequency) and PVA/silica systems (in the entire frequency spectrum). The increase in modulus with ϕ also followed similar model ΔE′ = a2ϕ proposed in the strain sweep mode. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2399–2412, 2005  相似文献   

2.
The effects of filler loading and a new silane coupling agent 3‐octanoylthio‐1‐ propyltriethoxysilane (NXT silane) on the polymer‐filler interaction and mechanical properties of silica‐filled and carbon black‐filled natural rubber (NR) compounds were studied. Silica (high dispersion silica7000GR, VN2, and VN3) and carbon black (N330) were used as the fillers, and the loading range was from 0 to 50 phr. The loading of NXT silane was from 0 to 6 phr. Experimental results show that the maximum and minimum torques of silica and carbon black‐filled NR increase with increasing filler loading. With increasing filler loading, the scorch time and optimum cure time decrease for carbon black‐filled NR, but increase for silica‐filled NR. The minimum torque, scorch time, and optimum cure time decrease because of the presence of NXT silane. For the carbon black and silica‐filled NR, the tensile strength and elongation at break have maximum values, but the hardness, M300, M100, and tear strength keep increasing with filler loading. The mechanical properties of silica‐filled NR were improved in the presence of NXT silane. With increasing filler loading, the storage modulus of filled NR increases, but the loss factor decreases. Carbon black shows the strongest polymer‐filler interaction, followed by VN3, 7000GR, and VN2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 573–584, 2005  相似文献   

3.
Styrene–butadiene rubber (SBR) is a copolymer of styrene and butadiene, and the butadiene unit is composed of cis‐1,4‐, trans‐1,4‐, and 1,2‐components. Filler‐polymer interactions of each component of SBR in silica‐filled SBR compounds were examined by microstructure analysis of the bound and unbound rubbers. The composition ratio of butadiene and styrene units (butadiene/styrene) of the bound rubber was higher than that of the compounded rubber. Of the butadiene units, the 1,2‐component of the bound rubber was more abundant than the cis‐1,4‐ and trans‐1,4‐components. The filler‐polymer interaction of the butadiene unit with silica was stronger than that of the styrene unit, and the interaction of the 1,2‐component was stronger as compared with the others. The butadiene–styrene ratio of the bound rubber of the compounds containing the silane coupling agent was lower than for the compounds without the silane. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 577–584, 2004  相似文献   

4.
Bound rubber in a filled rubber compound is formed by physical adsorption and chemisorption between the rubber and the filler. Styrene–butadiene rubber (SBR) is composed of four components of styrene, cis‐1,4‐, trans‐1,4‐, and 1,2‐units. Filler–polymer interactions in both silica and carbon black‐filled SBR compounds were studied by analyzing microstructures of the bound rubbers with pyrolysis‐gas chromatography. Differences in the filler–polymer interactions of the styrene, cis‐1,4‐, trans‐1,4‐, and 1,2‐units were investigated. The filler–polymer interactions of the butadiene units were found to be stronger than that of the styrene unit. The interactions of the cis‐1,4‐ and trans‐1,4‐units were stronger with carbon black than with silica, whereas the 1,2‐unit interacted more strongly with silica than with carbon black. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 439–445, 2001  相似文献   

5.
The morphological structure and mechanical properties of the star‐shaped solution‐polymerized styrene‐butadiene rubber (SSBR) and organically modified nanosilica powder/star‐shaped SSBR co‐coagulated rubber (N‐SSBR) both filled with silica/carbon black (CB) were studied. The results showed that, compared with SSBR, silica powder could be mixed into N‐SSBR much more rapidly, and N‐SSBR/SiO2 nanocomposite had better filler‐dispersion and processability. N‐SSBR/SiO2/CB vulcanizates displayed higher glass‐transition temperature and lower peak value of internal friction loss than SSBR/SiO2/CB vulcanizates. In the N‐SSBR/SiO2/CB vulcanizates, filler was dispersed in nano‐scale resulting in good mechanical properties. Composites filled with silica/CB doped filler exhibited more excellent mechanical properties than those filled with a single filler because of the better filler‐dispersion and stronger interfacial interaction with macromolecular chains. N‐SSBR/SiO2/CB vulcanizates exhibited preferable performance in abrasion resistance and higher bound rubber content as the blending ratio of silica to CB was 20:30. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The carbon–silica dual phase filler (CSDPF) was modified by bis (3‐triethoxy‐silylpropyl) tetrasulphane (Si69) and 1‐allyl‐3‐methyl‐imidazolium chloride (AMI), respectively. The natural rubber (NR) vulcanizates filled with modified CSDPF were fabricated through mechanical mixing followed by a high‐temperature cure process. The impacts of filler surface modification on the curing characters, crosslinked junctions, network structure, and mechanical properties of NR vulcanizates were investigated. The results showed that the Si69 interacted with CSDPF through covalent bond, while the interaction between AMI and CSDPF was hydrogen bond. Both modifications increased the cure rate of CSDPF/NR compounds as well as the crosslinked degree, compared with those of pristine CSDPF/NR compound. The modifications improved the dispersion of CSDPF in NR matrix. The covalent modification by Si69 caused a limited movement of NR chains in the CSDPF surface, which contributed to a greater tensile modulus of Si69‐modified CSDPF/NR. However, the higher content of mono‐sulfidic crosslink and the poorer content of strain‐induced crystallization in the NR matrix led to a slight increase of tensile strength and tear strength of Si69‐modified CSDPF/NR, compared with those of CSDPF/NR. The tensile modulus of AMI‐modified CSDPF/NR had a lower value due to a faster polymer chain motion on the CSDPF surface. However, the tensile and tear strength of AMI‐modified CSDPF/NR increased significantly because of the increase of mono‐sulfidic crosslink, strain‐induced crystallization, and the existed hydrogen bond between CSDPF and NR. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
《中国化学会会志》2017,64(4):427-433
In this study, a carbon‐controllable hierarchical micro/mesoporous carbon–silica material derived from agricultural waste rice husk was easily synthesized and utilized as filler in an epoxy matrix for electronic packaging applications. Scanning electron microscopy, thermogravimetric analysis, and N2 adsorption/desorption isotherms were used to characterize the morphology, thermal stability, carbon content, and porous structural properties, respectively, of the as‐obtained carbon–silica material, namely rice husk char (RHC ). As a filler material, the uniformly dispersed RHC filler in the epoxy/RHC composite was easily prepared through hydrogen bonding of the silanol group of silica with the epoxy matrix. For electronic packaging applications, the thermal conductivity and thermomechanical properties (storage modulus and coefficient of thermal expansion) of the epoxy/RHC composites improved with increasing carbon content. Moreover, loading of the 40% RHC filler substantially enhanced the storage modulus of the epoxy/RHC composite (5735 MPa ) compared to the epoxy with 40% commercial silica filler (3681 MPa ). Considerable commercial potential is expected for the carbon–silica composite because of the simple synthesis process and outstanding performance of the prepared packaging material.  相似文献   

8.
Lifetime spectra of positrons were measured for styrene–butadiene rubber (SBR) vulcanizates filled with carbon black (CB) or silica. At temperatures between 10 and 420 K, no large difference between the size of the open spaces in the CB/SBR vulcanizate and that in the specimen without the filler was observed. Above the glass‐transition temperature (Tg = 230 K), the same was true for the silica/SBR vulcanizate. Below Tg, however, the size of the open spaces was reduced by the incorporation of silica as a result of the suppression of local molecular motions in the SBR. The density of the open spaces was reduced by the incorporation of the fillers. However, above 400 K it started to increase in the silica/SBR vulcanizate. For the CB/SBR vulcanizate, the introduction of open spaces was well suppressed, even at 420 K. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 835–842, 2001  相似文献   

9.
The linear and nonlinear melt viscoelastic properties for a series of carbon black‐filled polymer composites were studied. Complementary tapping‐mode atomic force microscopy (AFM) studies were used to examine the dispersion and structural correlations of the filler particles in these composites. The low‐frequency dependence of the linear viscoelastic moduli gradually changes from liquidlike behavior for the unfilled polymer to pseudosolid character for composites with more than 9 vol % carbon black filler. The plateau modulus, inferred from the linear viscoelastic response, exhibits a somewhat discontinuous change at about 9 vol % filler. On the basis of the linear viscoelastic response, we postulate that the carbon black filler forms a continuous percolated network structure beyond 9 vol % filler, considerably lower than that expected from theoretical calculations for overlapping spheres and ellipsoids. We suggest that the lower threshold for percolation is due to the polymer mediation of the filler structure, resulting from the low functionality of the polymer and, consequently, few strong polymer–filler interactions, allowing for long loops and tails that can either bridge filler particles or entangle with one another. Furthermore, the strain amplitude for the transition from linear behavior to nonlinear behavior of the modulus for the composites with greater than 9 vol % filler is independent of frequency, and this critical strain amplitude decreases with increasing filler concentration. Complementary AFM measurements suggest a well‐dispersed carbon black structure with the nearest neighbor distance showing a discontinuous decrease at about 9 vol % filler, again consistent with the formation of a filler network structure beyond 9 vol % carbon black. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 256–275, 2001  相似文献   

10.
This article examines the application of time–temperature superpositioning (TTS) in certain thermorheologically complex polymers using a recently developed phenomenological model that describes crosslinked polymer viscoelasticity based on fundamental physical considerations. The model's capability to calculate both isochronal temperature sweeps and isothermal frequency sweeps of storage and loss moduli allows us to simulate conditions typical of certain thermorheologically complex polymers. We use the model to generate modulus frequency sweeps over the limited range of frequencies that are typically accessible to experiments. We apply TTS to shift these sweeps along the frequency axis to construct master curves. The model master curves are then compared with the model's “true” moduli curves over the full frequency domain at the reference temperature. This comparison suggests that nonsuperposability may go unnoticed if we only rely on the smoothness of the storage modulus master curve. Superpositioning to achieve a smooth loss modulus master curve tends to be more reliable. This has serious implications for assessing the reliability of relaxation moduli and creep compliance master curves that have no associated loss component that can be used to assess the quality of superpositioning. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 127–142, 1999  相似文献   

11.
Methacrylic acid (MAA) was used as in situ surface modifier to improve the interface interaction between nano‐CaCO3 particle and ethylene–propylene–diene monomer (EPDM) matrix, and hence the mechanical properties of nano‐CaCO3‐filled EPDM vulcanizates. The results showed that the incorporation of MAA improved the filler–matrix interaction, which was proved by Fourier transformation infrared spectrometer (FTIR), Kraus equation, crosslink density determination, and scanning electron microscope (SEM). The formation of carboxylate and the participation of MAA in the crosslinking of EPDM indicated the strong filler–matrix interaction from the aspect of chemical reaction. The results of Kraus equation showed that the presence of MAA enhanced the reinforcement extent of nano‐CaCO3 on EPDM vulcanizates. Crosslink density determination proved the formation of the ionic crosslinks in EPDM vulcanizates with the existence of MAA. The filler particles on tensile fracture were embedded in the matrix and could not be observed obviously, indicating that a strong interfacial interaction between the filler and the matrix had been achieved with the incorporation of MAA. Meanwhile, the presence of MAA remarkably increased the modulus and tensile strength of the vulcanizates, without negative effect on the high elongation at break. Furthermore, the ionic bond was thought to be formed only on filler surface because of the absolute deficiency of MAA, which resulted in the possible structure where filler particles were considered as crosslink points. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1226–1236, 2006  相似文献   

12.
The nonlinear effect at small strains (Payne effect) has been investigated in the case of silica‐filled styrene‐butadiene rubber. The originality of this study lies in the careful preparation of samples in order to fix all parameters except one, that is, the modification of the silica surface by grafting silane (introduced at different concentrations) via reactive mixing. The organosilane can be either a coupling or a covering surface treatment with an octyl alkyl chain. A careful morphological investigation has been performed prior to mechanical characterization and silica dispersion was found to be the same whatever the type and the amount of silane. The increasing amount of covering agents was found to reduce the amplitude of the Payne effect. A similar decrease is observed for low coupling agent concentration. At higher concentrations, the evolution turns through an increase due to the contribution of the covalent bonds between the matrix and the silica acting as additional crosslinking. The discussion of the initial modulus was done in the frame of both the filler–filler and filler–polymer models. It is unfortunately not possible to distinguish both scenarios, because filler–filler and filler–matrix interactions are modified in the same manner by the grafting covering agent. On the other hand, the reversible decrease of the modulus versus strain (Payne effect) is interpreted in terms of debonding of the polymeric chains from the filler surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 286–298, 2007  相似文献   

13.
Any quantitative information on the strength of interactions between inorganic filler and polymer is substantial for the future application of the composite. The magnitude of adhesion of two phases may be deduced from results collected by various experimental techniques. Polyether‐urethane/modified carbonate‐silicate fillers systems containing different amount of filler (5, 10, and 20 wt %) were the materials investigated. We propose to express the magnitude of modified filler/polymer interactions by Flory–Huggins χ parameter. It may be deduced from the results collected by inverse gas chromatographic (IGC) experiment. We have also tried to explain the influence of the solvent on values of the evaluated parameters and to check the usefulness of some of presented methods to minimize Δχ effect. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1853–1862, 2006  相似文献   

14.
The synthesis, characterization, and potential application as gene delivery systems of biodegradable dual‐responsive core–shell nanogels based on poly(2‐diethylaminoethyl) methacrylate (PDEAEMA) and poly(N‐vinylcaprolactam) (PVCL) are reported. These core–shell nanogels, having a PDEAEMA‐based core and a PVCL‐based shell, were synthesized by batch seeded emulsion polymerization. An indepth study of their swelling behavior was carried out, which presented a dual‐dependent thermo‐ and pH sensitivity. Core–shell nanogels synthesized formed complexes spontaneously through electrostatic interactions when mixing with small interfering RNA (siRNA) molecules. Moreover, the core–shell nanogel/siRNA complexes showed higher polyanion exchange resistance compared to that of the PDEAEMA‐based nanogel/siRNA complexes, indicating that the PVCL‐based shell enhanced the stability of the complexes. In vitro siRNA release profiles showed that siRNA release was controlled by the pH of the medium as well as by the crosslinking density of the PVCL‐based shell. These results indicate that dual‐responsive core–shell nanogels synthesized could be potentially useful as gene delivery systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3203–3217  相似文献   

15.
Phosphorus‐containing epoxy‐based epoxy–silica hybrid materials with a nanostructure were obtained from bis(3‐glycidyloxy)phenylphosphine oxide, diaminodiphenylmethane, and tetraethoxysilane in the presence of the catalyst p‐toluenesulfonic acid via an in situ sol–gel process. The silica formed on a nanometer scale in the epoxy resin was characterized with Fourier transform infrared, NMR, and scanning electron microscopy. The glass‐transition temperatures of the hybrid epoxy resins increased with the silica content. The nanometer‐scale silica showed an enhancement effect of improving the flame‐retardant properties of the epoxy resins. The phosphorus–silica synergistic effect on the limited oxygen index (LOI) enhancement was also observed with a high LOI value of 44.5. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 986–996, 2001  相似文献   

16.
Several kinds of organic–inorganic hybrids were synthesized from an epoxy resin and a silane alkoxide with a primary amine‐type curing agent or tertiary amine curing catalyst. In the hybrid systems cured with the primary amine‐type curing agent, the storage modulus in the high‐temperature region increased, and the peak area of the tan δ curve decreased. Moreover, the mechanical properties were improved by the hybridization of small amounts of the silica network. However, these phenomena were not observed in the hybrid systems cured with the tertiary amine catalyst. The differences in the network structures of the hybrid materials with the different curing processes were characterized with Fourier transform infrared (FTIR). In the hybrid systems cured with the primary amine‐type curing agent, FTIR results showed the formation of a covalent bond between silanol and hydroxyl groups that were generated by the reaction of an epoxy group with an active hydrogen of the primary amine. However, this phenomenon was not observed in the hybrids cured with the tertiary amine. The hybrids with the primary amine showed a homogeneous microstructure in transmission electron microscopy observations, although the hybrids cured with the tertiary amine showed a heterogeneous structure. These results mean that the differences in the interactions between the organic and inorganic phases significantly affect the properties and microstructures of the resultant composites. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1071–1084, 2001  相似文献   

17.
Rubber compounds are filled with reinforcing fillers to improve their physical properties. Carbon black and silica have different surface chemistries to each other. Differences in properties of carbon black‐ and silica‐reinforced styrene‐butadiene rubber (SBR) compounds were studied. Variation of properties of carbon black‐ or silica‐filled compounds with the filler content was also investigated. The silica‐filled compounds without any coupling agent and dispering agent were prepared to investigate the influence of polar materials‐adsorption on the silica surface. Viscosity and crosslink density increased with increase of the filler content. Hardness, modulus, tensile strength, and wear property were improved more and more by increasing the filler content. Viscosity of the silica‐filled compound was higher than that of the carbon black‐filled one. Cure rate of the silica‐filled compound became slower as the filler content increased, while that of the carbon black‐filled one became faster. Difference in properties between the carbon black‐ and silica‐filled compounds were explained by the poor silica dispersion and the adsorption of cure accelerator on the silica surface. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
《先进技术聚合物》2018,29(2):716-725
Foaming of trans‐1,4‐polyisoprene (TPI) polymer was carried out through a batch process using nitrogen (N2) as the blowing agent. TPI vulcanizates having varying crosslink densities were prepared by varying crosslinking agent content and curing time. The vulcanizates were then saturated with N2 inside a pressure vessel at a pressure of 14 MPa and varying temperatures for 5 hours before effecting the foaming by rapidly quenching the pressure. The effects of varying the crosslinking agent content, silica filler content, and precuring time of the vulcanizates and the effects of varying the gas saturation temperature of foaming on the cell characteristics and physical properties of the foam prepared were investigated. The cells of the TPI foams had a spherical, closed structure. The density, expansion ratio, cell size, cell density, and tensile properties of the foams varied with varying crosslink density of the TPI vulcanizates as well as the saturation temperature of foaming. The important effects of crosslink density and saturation temperature on the N2 solubility in the TPI matrix and thus on the foam expansion were discussed. The silica filler was found to be acting as a cell nucleating agent and reinforcing filler for the TPI foams.  相似文献   

19.
Isotactic polypropylene (i‐PP) can crystallize in different crystal modifications. In this article, the effect of sepiolite (one‐dimensional) and carbon black (three‐dimensional) fillers on the solid‐state drawability of i‐PP is discussed. The cross‐hatched structure of thermodynamically most stable α‐crystal phase in i‐PP does not allow for perfect chain alignment during solid‐state drawing. The β‐phase i‐PP, obtained by addition of specific nucleating agents, crystallizes in a non‐cross‐hatched spherulitic structure and allows more easy drawing. Depending on the filler type, β–α transformation takes place at different draw ratios, as was observed by in situ wide‐angle X‐ray diffraction measurements. It was observed that β‐nucleated i‐PP has a lower yield stress and can be drawn further than i‐PP crystallized in the α‐crystal phase. If added in the right amount, both carbon black and sepiolite have a reinforcing effect on PP tapes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1071–1082  相似文献   

20.
Structured latexes provide a promising route to hard coatings without the use of coalescing aids. We studied the thermomechanical properties of films from structured soft‐core/hard‐shell hydrophobic latexes. We found that the mechanical properties of these films were closely related to their very particular organization. When the rigid phase was continuous, whatever its volume fraction, the films exhibited a high elastic modulus. An analysis of the viscoelastic properties of the films provided a good method for obtaining information about the interphase between the hard shell and soft core of the latex particles. By varying the film structure through annealing or the particle composition (core/shell ratio, core crosslinking, etc.), we were able to tune the mechanical properties of the films. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2989–3000, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号