首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
 Stable styrene miniemulsions were prepared by using alkyl methacrylates as the reactive cosurfactant. Like conventional cosurfactants (e.g., cetyl alcohol (CA) and hexadecane (HD)), alkyl methacrylates (e.g., dodecyl methacrylate (DMA) and stearyl methacrylate (SMA)) may act as a cosurfactant in stabilizing the homogenized miniemulsions. Furthermore, the methacrylate group may be chemically incorporated into latex particles in subsequent miniemulsion polymerization. The data of the monomer droplet size, creaming rate and phase separation of monomer as a function of time were used to evaluate the shelf-life of miniemulsions stabilized by sodium dodecyl sulfate in combination with various cosurfactants. Polystyrene latex particles were produced via both monomer droplet nucleation and homogeneous nucleation in the miniemulsion polymerization using CA or DMA as the cosurfactant, with the result of a quite broad particle size distribution. On the other hand, the miniemulsion polymerization with HD or SMA showed a predominant monomer droplet nucleation. The resultant particle size distribution was relatively narrow. In miniemulsion polymerization, the less hydrophobic DMA is similar to CA, whereas the more hydrophobic SMA is similar to HD. Received: 19 November 1996 Accepted: 20 February 1997  相似文献   

2.
A series of forced gradient copolymers with different controlled distribution of monomer units along the copolymer backbone were successfully prepared by atom transfer radical polymerization in miniemulsion. The newly developed initiation technique, known as activators generated by electron transfer, was beneficial for forced gradient copolymers preparation because all polymer chains were initiated within the miniemulsion droplets and the miniemulsion remained stable throughout the entire polymerization. Various monomer pairs with different reactivity ratios were examined in this study, including n‐butyl acrylate/t‐butyl acrylate, n‐butyl methacrylate/methyl methacrylate, and n‐butyl acrylate/styrene. In each case, the added monomer diffused across the aqueous suspending medium and gradient copolymers with different forced distributions of comonomer units along the polymer backbone were obtained. The shape of the gradient along the backbone of the copolymers was influenced by the molar ratio of the monomers, the reactivity ratio of the comonomers as well as the feeding rate. The shape of the gradient was also affected by the relative hydrophobicities of the comonomers. Copolymerizations exhibited good control for all feeding rates and comonomer feeding ratios, as evidenced by narrow molecular weight distribution (Mw/Mn = 1.20–1.40) and molecular weight increasing smoothly with polymer yield, indicating high initiation efficiency. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1413–1423, 2007  相似文献   

3.
Poly(fluoroalkyl mathacrylate)‐block‐poly(butyl methacrylate) diblock copolymer latices were synthesized by a two‐step process. In the first step, a homopolymer end‐capped with a dithiobenzoyl group [poly(fluoroalkyl mathacrylate) (PFAMA) or poly(butyl methacrylate) (PBMA)] was prepared in bulk via reversible addition–fragmentation chain transfer (RAFT) polymerization with 2‐cyanoprop‐2‐yl dithiobenzoate as a RAFT agent. In the second step, the homopolymer chain‐transfer agent (macro‐CTA) was dissolved in the second monomer, mixed with a water phase containing a surfactant, and then ultrasonicated to form a miniemulsion. Subsequently, the RAFT‐mediated miniemulsion polymerization of the second monomer (butyl methacrylate or fluoroalkyl mathacrylate) was carried out in the presence of the first block macro‐CTA. The influence of the polymerization sequence of the two kinds of monomers on the colloidal stability and molecular weight distribution was investigated. Gel permeation chromatography analyses and particle size results indicated that using the PFAMA macro‐CTA as the first block was better than using the PBMA RAFT agent with respect to the colloidal stability and the narrow molecular weight distribution of the F‐copolymer latices. The F‐copolymers were characterized with 1H NMR, 19F NMR, and Fourier transform infrared spectroscopy. Comparing the contact angle of a water droplet on a thin film formed by the fluorinated copolymer with that of PBMA, we found that for the diblock copolymers containing a fluorinated block, the surface energy decreased greatly, and the hydrophobicity increased. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 471–484, 2007  相似文献   

4.
The effects of 2‐hydroxyalkyl methacrylates (HEMA and HPMA) on the styrene miniemulsion polymerizations stabilized by SDS/lauryl methacrylate (LMA) or SDS/stearyl methacrylate (SMA) were investigated. A mixed mode of particle nucleation (monomer droplet nucleation and homogeneous nucleation) is operative during polymerization. Homogeneous nucleation plays a crucial role in the polymerizations stabilized by SDS/LMA, whereas monomer droplet nucleation becomes more important in the polymerizations stabilized by SDS/SMA. The polymerization kinetics is insensitive to the type of 2‐hydroxyalkyl methacrylates, but the difference in the relative importance of monomer droplet nucleation and homogeneous nucleation is detected. Incorporation of 1‐pentanol (C5OH) into the reaction mixture also shows a significant influence on the polymerizations stabilized by SDS/LMA or SDS/SMA. This is attributed to the formation of a close‐packed structure of SDS and C5OH on the droplet surface, which acts as a barrier to the incoming oligomeric radicals. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3188–3199, 2000  相似文献   

5.
In the presence of β‐cyclodextrin (β‐CD), reversible addition–fragmentation chain transfer (RAFT) polymerization has been successfully applied to control the molecular weight and polydispersity [weight‐average molecular weight/number‐average molecular weight (Mw/Mn)] in the miniemulsion polymerization of butyl methacrylate, with 2‐cyanoprop‐2‐yl dithiobenzoate as a chain‐transfer agent (or RAFT agent) and 2,2′‐azoisobutyronitrile (AIBN) as an initiator. β‐CD acted as both a stabilizer and a solubilizer, assisting the transportation of the water‐insoluble, low‐molecular‐weight RAFT agent into the polymerization loca (i.e., droplets or latex particles) and thereby ensuring that the RAFT agent was homogeneous in the polymerization loca. The polymers produced in the system of β‐CD exhibited narrower polydispersity (1.2 < Mw/Mn < 1.3) than those without β‐CD. Moreover, the number‐average molecular weight in the former case could be controlled by a definite amount of the RAFT agent. Significantly, β‐CD was proved to have a favorable effect on the stability of polymer latex, and no coagulum was observed. The effects of the concentrations of the RAFT agent and AIBN on the conversion, the molecular weight and its distribution, and the particle size of latices were investigated in detail. Furthermore, the influences of the variations of the surfactant (sodium dodecyl sulfate) and costabilizer (hexadecane) on the RAFT/miniemulsion polymerization were also studied. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2931–2940, 2005  相似文献   

6.
Miniemulsions of methyl methacrylate with sodium lauryl sulfate as the surfactant and dodecyl mercaptan (DDM) as the cosurfactant (or hydrophobe) were prepared and polymerized. The emulsions were of a droplet size range common to miniemulsions and exhibited long-term stability (greater than 3 months). Results indicate that DDM retards Ostwald ripening and allows the production of stable miniemulsions. When these emulsions were initiated, particle formation occurred predominantly by monomer droplet nucleation. The effects of the concentration of surfactant, cosurfactant and initiator were determined. Rates of polymerization, monomer droplet sizes, polymer particle sizes, molecular weights of the polymer, and the effect of initiator concentration on the number of particles vary systematically in ways that indicate predominant droplet nucleation in these systems. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
In this research, poly(methyl methacrylate)‐b‐poly(butyl acrylate) (PMMA‐b‐PBA) block copolymers were prepared by 1,1‐diphenylethene (DPE) controlled radical polymerization in homogeneous and miniemulsion systems. First, monomer methyl methacrylate (MMA), initiator 2,2′‐azobisisobutyronitrile (AIBN) and a control agent DPE were bulk polymerized to form the DPE‐containing PMMA macroinitiator. Then the DPE‐containing PMMA was heated in the presence of a second monomer BA, the block copolymer was synthesized successfully. The effects of solvent and polymerization methods (homogeneous polymerization or miniemulsion polymerization) on the reaction rate, controlled living character, molecular weight (Mn) and molecular weight distribution (PDI) of polymers throughout the polymerization were studied and discussed. The results showed that, increasing the amounts of solvent reduced the reaction rate and viscosity of the polymerization system. It allowed more activation–deactivation cycles to occur at a given conversion thus better controlled living character and narrower molecular weight distribution of polymers were demonstrated throughout the polymerization. Furthermore, the polymerization carried out in miniemulsion system exhibited higher reaction rate and better controlled living character than those in homogeneous system. It was attributed to the compartmentalization of growing radicals and the enhanced deactivation reaction of DPE controlled radical polymerization in miniemulsified droplets. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4435–4445, 2009  相似文献   

8.
Homogeneous copolymer latex particles of dodecyl methacrylate (DMA) and low‐molecular‐weight hydroxy‐terminated polybutadiene (HTPB) oligomers were prepared by free‐radical polymerization using miniemulsion methods. Rate data and latex characteristics were consistent with the classical miniemulsion mechanism where nucleation of monomer droplets is the predominant pathway of particle formation. There is essentially no particle formation by secondary nucleation in the water phase. Characterization of the copolymer latex particles using transmission electron microscopy and modulated differential scanning calorimetry suggested that there is a significant amount of grafted poly(DMA)/HTPB polymer contributing to the miscibility of the HTPB and poly(DMA) phases. Particles were more homogeneous at increased HTPB composition, of relatively narrow polydispersity, and could be prepared reproducibly using a number of different initiation systems. The observed trends can all be rationalized in terms of conventional understanding of miniemulsion polymerization systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3404–3416, 2004  相似文献   

9.
SG1-based amphiphilic macroinitiators were synthesized from oligoethylene glycol methyl ether methacrylate and 10 mol% acrylonitrile or styrene (as the controlling comonomer) to conduct the nitroxide mediated polymerization of bio-based methacrylic monomers (isobornyl methacrylate (IBOMA) and C13 alkyl methacrylate (C13MA)) in miniemulsion. The effect of the addition of surfactant (DOWFAX 8390), co-stabilizer (n-hexadecane) and different reaction temperatures (80, 90 and 100°C) on polymerization kinetics was studied. We found that the NMP of IBOMA/C13MA using amphiphilic macroalkoxyamines were most effective during miniemulsion polymerization (linear trend of Mn versus conversion and high latex stability) in presence of 2 wt% surfactant and 0.8 wt% co-stabilizer (relative to monomer) at 90°C. The effect of surfactant, co-stabilizer and temperature on particle size during the polymerization was studied and suggested a decrease in initial particle size with the addition of surfactant and co-stabilizer. Finally, the thermal properties of IBOMA/C13MA polymers, prepared by amphiphilic macroinitiators, were examined thoroughly, indicating a Tg in the range of −44°C < Tg < 109°C.  相似文献   

10.
An azido‐containing functional monomer, 11‐azido‐undecanoyl methacrylate, was successfully polymerized via ambient temperature single electron transfer initiation and propagation through the reversible addition–fragmentation chain transfer (SET‐RAFT) method. The polymerization behavior possessed the characteristics of “living”/controlled radical polymerization. The kinetic plot was first order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn ≤ 1.22). The complete retention of azido group of the resulting polymer was confirmed by 1H NMR and FTIR analysis. Retention of chain functionality was confirmed by chain extension with methyl methacrylate to yield a diblock copolymer. Furthermore, the side‐chain functionalized polymer could be prepared by one‐pot/one‐step technique, which is combination of SET‐RAFT and “click chemistry” methods. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
The reversible addition fragmentation chain transfer (RAFT) polymerization of styrene in alcohol/water mixture mediated with the poly(N‐isopropylacrylamide) trithiocarbonate macro‐RAFT agent (PNIPAM‐TTC) is studied and compared with the general RAFT dispersion polymerization in the presence of a small molecular RAFT agent. Both the homogeneous/quasi‐homogeneous polymerization before particle nucleation and the heterogeneous polymerization after particle nucleation are involved in the PNIPAM‐TTC‐mediated RAFT polymerization, and the two‐stage increase in the molecular weight (Mn) and nanoparticle size of the synthesized block copolymer is found. In the initial homogeneous/quasi‐homogeneous polymerization, the Mn and nanoparticle size slowly increase with monomer conversion, whereas the Mn and particle size quickly increase in the subsequent heterogeneous RAFT polymerization, which is much different from those in the general RAFT dispersion polymerization. Besides, the PNIPAM‐TTC‐mediated RAFT polymerization runs much faster than the general RAFT dispersion polymerization. This study is anticipated to be helpful to understand the polymer chain extension through RAFT polymerization under dispersion conditions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Cationic and anionic amphiphilic monomers (surfmers) were synthesized and used to stabilize particles in miniemulsion polymerization. A comparative study of classical cationic and anionic surfactants and the two surfmers was conducted with respect to the reaction rates and molecular weight distributions of the formed polymers. The reversible addition–fragmentation chain transfer process was used in the miniemulsion polymerization reactions to control the molecular weight distribution. The reaction rates of the surfmer‐stabilized miniemulsion polymerization of styrene and methyl methacrylate were similar (in most cases) to those of the classical‐surfactant‐stabilized miniemulsion polymerizations. The final particle sizes were also similar for polystyrene latexes stabilized by the surfmers and classical surfactants. However, poly(methyl methacrylate) latexes stabilized by the surfmers had larger particle sizes than latexes stabilized by classical surfactants. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 427–442, 2006  相似文献   

13.
Herein we report a successful dispersion polymerization of 2‐hydroxyethyl methacrylate (HEMA) in a carbon dioxide continuous phase with a block copolymer consisting of polystyrene and poly(1,1‐dihydroperfluorooctyl acrylate) as a stabilizer. Poly(2‐hydroxyethyl methacrylate) was effectively emulsified in carbon dioxide with the amphiphilic diblock copolymer surfactant, and the successful stabilization of the polymerization simultaneously gave spherical particles in the submicrometer range with relatively narrow particle size distributions. The initial concentrations of HEMA and the stabilizer and the pressure had substantial effects on the size of the colloidal particles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3783–3790, 2000  相似文献   

14.
Living free‐radical polymerization of methacrylate and styrenic monomers with ionic surfactants was carried out with reversible addition–fragmentation chain transfer in miniemulsion with different surfactant types and concentrations. The previously reported problem of phase separation was found to be insignificant at higher surfactant concentrations, and control of the molar mass and polydispersity index was superior to that of published miniemulsion systems. Cationic and anionic surfactants were used to examine the validity of the argument that ionic surfactants interfere with transfer agents. Ionic surfactants were suitable for miniemulsion polymerization under certain conditions. The colloidal stability of the miniemulsions was consistent with the predictions of a specific model. The living character of the polymer that comprised the latex material was shown by its transformation into block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 960–974, 2004  相似文献   

15.
Successful miniemulsion polymerizations of very hydrophobic monomers, such as lauryl methacrylate and 4‐tert‐butyl styrene, initiated by very hydrophobic (i.e., completely water‐insoluble) lauroyl peroxide, are reported. Conversion‐time histories, as well as final latex properties, for example, the particle size distribution, are different from similar miniemulsion polymerizations in the presence of water‐soluble initiators. The observed differences can be attributed to the average number of radicals inside a miniemulsion particle; the system obeys Smith‐Ewart case I rather than Case II kinetics. Albeit the pairwise generation of radicals in the monomer droplets, substantial polymerization rates are observed. Water, present in the droplet interfacial layer, is supposed to act as chain transfer agent. The product of a chain transfer event is a hydroxyl radical, exit of this hydroxyl radical allows for the presence of single radicals in particles. The proposed mechanisms allow for agreement between initial droplet and final particle size distributions in miniemulsion polymerization initiated by lauroyl peroxide. © 2016 The Authors Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2731–2745  相似文献   

16.
A polymerizable cationic quaternary ammonium surfactant (CQAS) based on 2‐(dimethylamino)ethyl methacrylate (DMAEMA) was successfully synthesized via quaternization reaction. The product was characterized by FTIR and 1H NMR spectroscopy, and its critical micelle concentration (CMC) was obtained by surface tension measurement. The surfmer acted well as comonomer and surfactant to stabilize monomer droplets during miniemulsion polymerization. To identify whether this system undergoes miniemulsion nucleation mechanism, surface tension, particle size, and Ndroplet/Nparticle of the system were also measured. The effect of concentration and counter‐ion of the surfmer, and pH value of the system were systematically investigated by kinetic analysis and dynamic light scattering (DLS). The resulting nanopore microspheres were observed by transmission electron micrograph (TEM) and field emission scanning electron micrograph (FESEM) and showed the nanopore morphology with reasonable stability. Another cationic surfactant cetyltrimethylammonium bromide (CTAB) was used for comparative studies. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5800–5810, 2007  相似文献   

17.
Poly(butadiene‐co‐acrylonitrile) (NBR) nanoparticles were synthesized in a semibatch emulsion polymerization system using Gemini surfactant trimethylene‐1,3‐bis (dodecyldimethylammonium bromide), referred to as Gemini‐type surfactant (GS) 12‐3‐12, as the emulsifier. In this polymerization system, an enhanced decomposition rate of initiator ammonium persulfate was achieved even under the low temperature of 50 °C which is attributed to the acidic initiation environment provided using GS 12‐3‐12. The microstructure and copolymer composition of the polymer nanoparticles were characterized by Fourier‐transformed infrared and 1H nuclear magnetic resonance spectroscopy. The effects of the surfactant concentration on the particle size, zeta potential, polymerization conversion, copolymer composition, molecular weight, and glass transition temperature (Tg) were investigated. It was found that the particle diameter can be controlled by the surfactant concentration and monomer/water ratio and particle sizes below 20 nm can be reached. The obtained latex particles exhibit a spherical morphology. A kinetic study of the copolymerization reaction was carried out, which indicated that an azeotropic composition was produced. The synthesized fine NBR nanoparticles can be employed as the nano substrate for a subsequent hydrogenation process so as to overcome the challenge involved in the field of latex hydrogenation of polymers, which can be found in a related report: Organic Solvent‐Free Catalytic Hydrogenation of Diene‐based Polymer Nanoparticles in Latex Form: Part II. Kinetic Analysis and Mechanistic Study. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Multiple and diverse applications have been recently found for miniemulsions and miniemulsion polymerization. In this work, miniemulsion polymerization is presented as a suitable technique for the preparation of high‐solid‐content latices with large particle sizes. Monomer miniemulsions were prepared with a high‐pressure homogenizer, and droplet sizes of 200–700 nm were obtained. Latexes with particle sizes larger than the sizes commonly accepted for miniemulsion polymerization were obtained. With fixed operational conditions of the homogenizer, the type of stabilizer was the key parameter determining the droplet size and the droplet size distribution. The particle size of the latices obtained by miniemulsion polymerization indicated that the particles were mainly formed by droplet nucleation. Latexes obtained by this process have multiple applications, including use as seeds in the polymerization of high‐solid‐content latices. This article shows that potential new applications for miniemulsion polymerization are far from being exhausted. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4222–4227, 2004  相似文献   

19.
Polymer/SiO2 nanocomposite microspheres were prepared by double in situ miniemulsion polymerization in the presence of methyl methacrylate, butyl acrylate, γ‐methacryloxy(propyl) trimethoxysilane, and tetraethoxysilane (TEOS). By taking full advantage of phase separation between the growing polymer particles and TEOS, inorganic/polymer microspheres were fabricated successfully in a one‐step process with the formation of SiO2 particles and the polymerization of organic monomers taking place simultaneously. The morphology of nanocomposite microspheres and the microstructure, mechanical properties, thermal properties, and optical properties of the nanocomposite films were characterized and discussed. The results showed that hybrid microspheres had a raspberry‐like structure with silica nanoparticles on the shells of polymer. The silica particles of about 20 nm were highly dispersed within the nanocomposite films without aggregations. The transmittance of nanocomposite film was comparable to that of the copolymer film at around 70–80% from 400 to 800 nm. The mechanical properties and the fire‐retardant behavior of the polymer matrix were improved by the incorporation of silica nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3128–3134, 2010  相似文献   

20.
Polystyrene microlatexes have been prepared by conventional emulsion polymerization with a novel amphiphilic water‐soluble ABA triblock copolymer, poly[2‐(dimethylamino)ethyl methacrylate]15b‐poly(propylene oxide)36b‐poly[2‐(dimethyl‐amino)ethyl methacrylate]15 (PDMAEMA15‐PPO36‐PDMAEMA15), as a polycationic emulsifier under acidic or neutral conditions. The ABA triblock copolymer was developed by oxyanion‐initiated polymerization in our laboratory. In this study, it acted well both as a polycationic polymeric surfactant to form block copolymeric micelles for emulsion polymerization and as a stabilizer to be anchored into the polystyrene microlatex or adsorbed onto its surface. The results obtained with various copolymer concentrations and different pH media showed that microlatex diameters decreased remarkably with increased concentration of this ABA triblock copolymeric emulsifier, but were not as much affected by the pH of media within the experimental range of 3.4–7.0. The observed difference of the particle sizes from transmission electron microscopy and dynamic light scattering measurements is discussed in terms of the effect of the absorbed surfactants and their electrical double layers. This difference has led to the formation of a cationic polyelectrolyte fringe on the surface of microspheres. The final microlatexes were characterized with respect to total conversion, particle diameter, and particle size distribution as well as colloidal stability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3734–3742, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号