首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two homeotypic hydrated uranyl arsenates, (UO2)[(UO2)(AsO4)]2(H2O)4, UAs4, and (UO2)[(UO2)(AsO4)]2(H2O)5, UAs5 were synthesized by hydrothermal methods. Intensity data were collected at room temperature using MoKα X-radiation and a CCD-based area detector. Their crystal structures were solved by direct methods and refined by full-matrix least-squares techniques on the basis of F2 to agreement indices (UAs4, UAs5) wR2=0.116, 0.060, for all data, and R1=0.046, 0.033, calculated for 3176, 5306 unique observed reflections (|Fo|>4σF) respectively. UAs4 is monoclinic, space group P21/c, Z=4, a=11.238(1), b=7.152(1), c=21.941(2)Å, β=104.576(2)°, V=1706.8(1)Å3, Dcalc=4.51 g/cm3. UAs5 is orthorhombic, space group Pca21, Z=4, a=20.133(2), b=11.695(1), c=7.154(1)Å, V=1684.4(1)Å3, Dcalc=4.65 g/cm3. Both structures contain sheets of arsenate tetrahedra and uranyl pentagonal bipyramids, with composition [(UO2)(AsO4)]1− and the uranophane sheet anion-topology. The sheets are connected by a uranyl pentagonal bipyramid in the interlayer that shares corners with an arsenate tetrahedron on each of two adjacent sheets, resulting in open-frameworks with isolated H2O groups in the larger cavities of the structures. The uranyl arsenate sheet in UAs4 is relatively planar, and is topologically identical with the uranyl phosphate sheet in (UO2)[(UO2)(PO4)]2(H2O)4. The uranyl arsenate sheet in UAs5 is the same geometrical isomer as in UAs4, but is highly corrugated, exhibiting approximately right angle bends of the sheet after every second uranyl arsenate chain repeat.  相似文献   

2.
Two hydrated uranyl arsenates and a uranyl phosphate were synthesized by hydrothermal methods in the presence of amine structure-directing agents and their structures determined: (N2C6H14)[(UO2)(AsO4)]2(H2O)3, DabcoUAs, {NH(C2H5)3}[(UO2)2(AsO4)(AsO3OH)], TriethUAs, and (N2C4H12)(UO2)[(UO2)(PO4)]4(H2O)2, PiperUP. Intensity data were collected at room temperature using MoKα X-radiation and a CCD-based area detector. The crystal structures were refined by full-matrix least-squares techniques on the basis of F2 to agreement indices (DabcoUAs, TriethUAs, PiperUP) wR2=5.6%, 8.3%, 7.2% for all data, and R1=2.9%, 3.3%, 4.0%, calculated for 1777, 5822, 9119 unique observed reflections (|Fo|?4σF), respectively. DabcoUAs is monoclinic, space group C2/m, Z=2, a=18.581(1), b=7.1897(4), c=7.1909(4) Å, β=102.886(1)°, V=936.43(9) Å3, Dcalc=3.50 g/cm3. TriethUAs is monoclinic, space group P21/n, Z=4, a=9.6359(4), b=18.4678(7), c=10.0708(4) Å, β=92.282(1)°, V=1790.7(1) Å3, Dcalc=3.41 g/cm3. PiperUP is monoclinic, space group Pn, Z=2, a=9.3278(4), b=15.5529(7), c=9.6474(5) Å, β=93.266(1)°, V=1397.3(1) Å3, Dcalc=4.41 g/cm3. The structure of DabcoUAs contains the autunite-type sheet formed by the sharing of vertices between uranyl square bipyramids and arsenate tetrahedra. The triethylenediammonium cations are located in the interlayer along with two H2O groups and are disordered. Both TriethUAs and PiperUP contain sheets formed of uranyl pentagonal bipyramids and tetrahedra (arsenate and phosphate, respectively) with the uranophane sheet-anion topology. In TriethUAs, triethlyammonium cations are located in the interlayer. In PiperUP, the sheets are connected by a uranyl pentagonal bipyramid that shares corners with phosphate tetrahedra of adjacent sheets, resulting in a framework with piperazinium cations and H2O groups in the cavities of the structure.  相似文献   

3.
Two hydrated uranyl arsenates, Cs2(UO2)[(UO2)(AsO4)]4(H2O)2 (CsUAs) and Rb2(UO2)[(UO2)(AsO4)]4(H2O)4.5 (RbUAs), were synthesized by hydrothermal methods. Intensity data were collected at room temperature using MoKα radiation and a CCD-based area detector. The crystal structure of RbUAs was solved by direct methods, whereas the structure model of the phosphate Cs2(UO2)[(UO2)(PO4)]4(H2O)2 was used for CsUAs; both were refined by full-matrix least-squares techniques on the basis of F2 to agreement indices (CsUAs, RbUAs) wR2=0.061,0.041, for all data, and R1=0.032,0.021, calculated for 5098, 4991 unique observed reflections (|Fo|>4σF), respectively. The compound CsUAs is orthorhombic, space group Cmc21, Z=4, a=15.157(2), b=14.079(2), c=13.439(2) Å, V=2867.9(1) Å3. RbUAs is monoclinic, space group C2/m, Z=4, a=13.4619(4), b=15.8463(5), c=14.0068(4) Å, β=92.311(1)°, V=2985.52(2) Å3. The structures consist of sheets of arsenate tetrahedra and uranyl pentagonal bipyramids, with composition [(UO2)(AsO4)], that are topologically identical to the uranyl silicate sheets in uranophane-beta. These sheets are connected by a uranyl pentagonal bipyramid in the interlayer that shares corners with two arsenate tetrahedra on each of two adjacent sheets and whose fifth equatorial vertex is an H2O group, resulting in an open framework with alkali metal cations in the larger cavities of the structures. CsUAs is isostructural with its phosphate analogue, and has two Cs atoms and a H2O group in its structural cavities. RbUAs is not isostructural with its phosphate analogue, although it has a homeotypic framework. Its structural cavities are occupied by three Rb atoms and four H2O groups; one Rb position and three of the interstitial H2O groups are half-occupied. The partial occupancies of these positions probably result from the accommodation of the larger As atoms (relative to P) in the framework and resultant larger cavities.  相似文献   

4.
    
The syntheses of five new aminoalkylbis(phenolate) ligands (as hydrochlorides) and their uranyl complexes are described. The reaction between uranyl nitrate hexahydrate and phenolic ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminopropane) · HCl], H2L1 · HCl, forms a uranyl complex [UO2(HL1)2] · 2CH3CN (1). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane) · HCl], H2L2 · HCl, forms a uranyl complex with a formula [UO2(HL2)2] · 2CH3CN (2). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methyl benzyl)-1-aminohexane) · HCl], H2L3 · HCl, yields a uranyl complex with a formula [UO2(HL3)2] · 2CH3CN (3) and the ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-cyclohexylamine) · HCl], H2L4 · HCl, yields a uranyl complex with a formula [UO2(HL4)2] (4). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-benzylamine) · HCl], H2L5 · HCl, forms a uranyl complex with a formula [UO2(HL5)2] · 2MeOH (5). The molecular structures of 1, 2′ (2 without methanol), 3, 4 and 5 were verified by X-ray crystallography. The complexes 15 are neutral zwitterions which form in a molar ratio of 1:2 (U to L) in the presence of a base (triethylamine) and bear similar mononuclear, distorted octahedral uranyl structures with the four coordinating phenoxo ligands forming an equatorial plane and resulting in a centrosymmetric structure for the uranyl ion. In uranyl ion extraction studies from water to dichloromethane with ligands H2L1 · HCl–H2L5 · HCl, the ligands H2L2 · HCl and H2L4 · HCl are the most effective ones.  相似文献   

5.
    
Using hydrothermal methods, two manganese arsenates have been synthesized and characterized by single crystal X‐ray diffraction. The products Mn5(AsO4)2(HAsO4)2 ?4H2O ( 1 ) and Mn2AsO4(OH) ( 2 ), the Mn end‐members of the minerals villyaellenite and sarkinite, respectively, have been obtained (crystal data 1 : monoclinic, C2/c, a = 18.109(4), b = 9.332(2), c = 9.809(2) Å, β = 96.172(4)?, Z = 4; 2 : monoclinic, P21/c, a = 10.219(2), b = 13.613(2), c = 12.780(2) Å, β = 108.834(2)?, Z = 16). In both compounds a three‐dimensional framework of edge‐sharing MnO polyhedra is observed. Based on the availability of the all Mn2containing form of villyaellenite ( 1 ), the ordering scheme of the impurity cations of the natural samples could be confirmed. Magnetic susceptibility measurements of 1 indicate the presence of high‐spin Mn2+ ions. The comparison of the data on sarkinite ( 2 ) with the data obtained from the natural sample indicates that the mineral has either a very high Mn content, or an absence of impurity cation ordering.  相似文献   

6.
Two new uranyl complexes [UO2(DPDPU)2(NO3)2](C6H5CH3) (1) and [UO2(PMBP)2 (DPDPU)](CH3C6H4CH3)0.5 (2), (DPDPU?=?N,N′-dipropyl-N,N′-diphenylurea, HPMBP?= 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5) were synthesized and characterized. The coordination geometry of the uranyl atom in 1 is distorted hexagonal bipyramidal, coordinated by two oxygen atoms of two DPDPU molecules and four oxygen atoms of two bidentate nitrate groups. The coordination geometry of the uranyl atom in 2 is distorted pentagonal bipyramidal, coordinated by one oxygen atom of one DPDPU molecule and four oxygen atoms of two chelating PMBP molecules.  相似文献   

7.
Two modifications of the new uranyl oxalate hydroxide dihydrate [UO2)2(C2O4)(OH)2(H2O)2] (1 and 2) and one form of the new uranyl oxalate hydroxide trihydrate [(UO2)2(C2O4)(OH)2(H2O)2]·H2O (3) were synthesized by hydrothermal methods and their structures determined from single-crystal X-ray diffraction data. The crystal structures were refined by full-matrix least-squares methods to agreement indices R(wR)=0.0372(0.0842) and 0.0267(0.0671) calculated for 1096 and 1167 unique observed reflections (I>2σ(I)), for α (1) and β (2) forms, respectively and to R(wR)=0.0301(0.0737) calculated for 2471 unique observed reflections (I>2σ(I)), for 3. The α-form of the dihydrate is triclinic, space group , Z=1, a=6.097(2), b=5.548(2), , α=89.353(5), β=94.387(5), γ=97.646(5)°, , β-form is monoclinic, space group C2/c, Z=4, a=12.180(3), b=8.223(2), , β=95.817(4), . The trihydrate is monoclinic, space group P21/c, Z=4, a=5.5095(12), b=15.195(3), , β=93.927(3), . In the three structures, the coordination of uranium atom is a pentagonal bipyramid composed of dioxo UO22+ cation perpendicular to five equatorial oxygen atoms belonging to one bidentate oxalate ion, one water molecule and two hydroxyl ions in trans configuration in 2 and in cis configuration in 1 and 3. The UO7 polyhedra are linked through hydroxyl oxygen atoms to form different structural building units, dimers [U2O10] obtained by edge-sharing in 1, chains [UO6] and tetramers [U4O26] built by corner-sharing in 2 and 3, respectively. These units are further connected by oxalate entities that act as bis-bidentate to form one-dimensional chains in 1 and bi-dimensional network in 2 and 3. These chains or layers are connected in frameworks by hydrogen-bond arrays.  相似文献   

8.
用熔盐法合成了新型硅酸铀K4(UO2),Si8O22,并用单晶X射线衍射确定结构.结果表明,化合物由UO6 双四角椎及硅酸根四面体构成的(Si8O22)12-单元组成,其中(Si8O22)12-单元的结构形态是最新发现的.29Si MAS NMR测定结果与晶体结构相吻合,而光致发光光谱证实了六价铀的存在.K(UO2),...  相似文献   

9.
Two new mixed organic-inorganic uranyl molybdates, (C6H14N2)3[(UO2)5(MoO4)8](H2O)4 (1) and (C2H10N2)[(UO2)(MoO4)2] (2), have been obtained by hydrothermal methods. The structure of 1 [triclinic, , Z=1, a=11.8557(9), b=11.8702(9), c=12.6746(9) Å, α=96.734(2)°, β=91.107(2)°, γ=110.193(2)°, V=1659.1(2) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.058, which was calculated for the 5642 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl square bipyramids, uranyl pentagonal bipyramids, and MoO4 tetrahedra, with composition [(UO2)5(MoO4)8]6−, that are parallel to (−101). H2O groups and 1,4-diazabicyclo [2.2.2]-octane (DABCO) molecules are located in the interlayer, where they provide linkage of the sheets. The structure of 2 [triclinic, , Z=2, a=8.4004(4), b=11.2600(5), c=13.1239(6) Å, α=86.112(1)°, β=86.434(1)°, γ=76.544(1)°, V=1203.14(10) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.043, which was calculated for 5491 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl pentagonal bipyramids and MoO4 tetrahedra, with composition [(UO2)(MoO4)2]2−, that are parallel to (110). Ethylenediamine molecules are located in the interlayer, where they provide linkage of the sheets. All known topologies of uranyl molybdate sheets of corner-sharing U and Mo polyhedra can be described by their nodal representations (representations as graphs in which U and Mo polyhedra are given as black and white vertices, respectively). Each topology can be derived from a simple black-and-white graph of six-connected black vertices and three-connected white vertices by deleting some of its segments and white vertices.  相似文献   

10.
    
The crystalline structure of γ-Zr(AsO4)(H2AsO4) × 2 H2O (γ-ZrAs) has been refined by the Rietveld method. It has a monoclinic P21 layered structure built up from AsO4 tetrahedra and ZrO6 octahedra stacked along the 001 direction. The cell parameters are: a = 5.5752(6) Å, b = 6.8290(7) Å, c = 12.110(1) Å, and β = 103.03(1)°. The layered nature of γ-ZrAs is confirmed by the intercalation of n-alkylamines (CH3[CH2]nNH2; n = 0–5) as well as of cyclic amines (benzylamine, cyclohexylamine, piperidine, and pyridine). Among the linear amines, only with methyl-, ethyl-, and hexylamine is the maximum incorporation attained. With the cyclic amines, except in the case of pyridine, pure new phases are obtained, with the highest degree of intercalation being one mol of amine per mol of γ-ZrAs.  相似文献   

11.
Under mild hydrothermal conditions UO2(NO3)2·6H2O, Hg2(NO3)2·2H2O, and Na2HAsO4·7H2O react to form [Hg5O2(OH)4][(UO2)2(AsO4)2] (HgUAs-1). Single crystal X-ray diffraction experiments reveal that HgUAs-1 possesses a pseudo-layered structure consisting of two types of layers: and . The layers are complex, and contain three crystallographically unique Hg centers. The coordination environments and bond-valence sum calculations indicate that the Hg centers are divalent. The layers belong to the Johannite topological family. The and layers are linked to each other through μ2-O bridges that include Hg?O=U=O interactions.  相似文献   

12.
In this communication, we report the oxidation and reduction behavior of fluorite type solid solutions in U-Zr-O. The maximum solubility of ZrO2 in UO2 lattice could be achieved with a mild oxidizing followed by reducing conditions. The role of valency state of U is more dominating in controlling the unit cell parameters than the incorporated interstitial oxygen in the fluorite lattice. The controlled oxidation studies on U-Zr-O solid solutions led to the delineation of a new distorted fluorite lattice at the U:Zr=2:1 composition. The detailed crystal structure analysis of this ordered composition Zr0.33U0.67O2.33 (ZrU2O7) has been carried from the powder XRD data. This phase crystallizes in an orthorhombically distorted fluorite type lattice with unit cell parameters: a=5.1678(2), b=5.4848(2), c=5.5557(2) Å and V=157.47(1) Å3 (Space group: Cmcm, No. 63). The metal ions have distorted cubical polyhedra with anion similar to the fluorite structure. The excess anions are occupied in the interstitial (empty cubes) of the fluorite unit cell. The crystal structure and chemical analyses suggest approximately equal fractions of U4+ and U6+ in this compound. The details of the thermal stability as well as kinetics of formation and oxidation of ZrU2O7 are also studied using thermogravimetry.  相似文献   

13.
Two new potassium uranyl molybdates K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6 have been obtained by solid state chemistry . The crystal structures were determined by single crystal X-ray diffraction data, collected with MoKα radiation and a charge coupled device (CCD) detector. Their structures were solved using direct methods and Fourier difference techniques and refined by a least square method on the basis of F2 for all unique reflections, with R1=0.046 for 136 parameters and 1412 reflections with I?2σ(I) for K2(UO2)2(MoO4)O2 and R1=0.055 for 257 parameters and 2585 reflections with I?2σ(I) for K8(UO2)8(MoO5)3O6. The first compound crystallizes in the monoclinic symmetry, space group P21/c with a=8.250(1) Å, b=15.337(2) Å, c=8.351(1) Å, β=104.75(1)°, ρmes=5.22(2) g/cm3, ρcal=5.27(2) g/cm3 and Z=4. The second material adopts a tetragonal unit cell with a=b=23.488(3) Å, c=6.7857(11) Å, ρmes=5.44(3) g/cm3, ρcal=5.49(2) g/cm3, Z=4 and space group P4/n.In both structures, the uranium atoms adopt a UO7 pentagonal bipyramid environment, molybdenum atoms are in a MoO4 tetrahedral environment for K2(UO2)2(MoO4)O2 and MoO5 square pyramid coordination in K8(UO2)8(MoO5)3O6. These compounds are characterized by layered structures. The association of uranyl ions (UO7) and molybdate oxoanions MoO4 or MoO5, give infinite layers [(UO2)2(MoO4)O2]2− and [(UO2)8(MoO5)3O6]8− in K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6, respectively. Conductivity properties of alkali metal within the interlayer spaces have been measured and show an Arrhenius type evolution.  相似文献   

14.
    
The first sodium uranyl chromate, Na4[(UO2)(CrO4)3], has been obtained by high‐temperature solid‐state reaction. The structure (triclinic, P1¯, Z = 2, a = 7.1548(3), b = 8.4420(3), c = 11.5102(5)Å, α = 80.203(1)°, β = 79.310(1)°, γ = 70.415(1)° V = 639.24(4)Å3 ) has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1 = 0.024 [calculated on the basis of 4374 unique observed reflections (‖Fo‖ 4σF)]. The structure is based on chains of composition [(UO2)(CrO4)3] that are parallel to [1¯01]. The chains contain UrO5 pentagonal bipyramids (Ur = Uranyl) that share all equatorial corners with CrO4 tetrahedra. Cr(1)O4 and Cr(3)O4 tetrahedra bridge between two adjacent UrO5 bipyramids, whereas Cr(2)O4 tetrahedra share one corner with one UrO5 bipyramid each. The [(UO2)(CrO4)3] chains are planar and oriented parallel to (313). The Na+ cations provide linkage of the chains in the structure.  相似文献   

15.
While the terminally protected tripeptide Boc-Phe-Gly-m-ABA-OMe I (m-ABA, meta-amino benzoic acid) is an excellent gelator of aromatic organic solvents, another similar tripeptide Boc-Leu-Gly-m-ABA-OMe II, where the Phe residue of peptide I is replaced by Leu, cannot form gels with the same solvents. The morphology of the gels of peptide I, characterised by the field-emission scanning electron microscopy and high-resolution transmission electron microscopy, reveals the formation of nanofibrous networks which are known to encapsulate solvent molecules to form gels. The wide-angle X-ray scattering studies of the gels suggest the β-sheet-mediated self-assembly of peptide I in the formation of a nanofibrous network, where π-stacking interactions of Phe play an important role in the self-assembly and gel formation. The dried gel of peptide I observed between crossed polarisers after binding with a physiological dye, Congo red, shows a bluish-green birefringence, a characteristic of amyloid fibrils.  相似文献   

16.
李晔  韩伟伟  廖明霞 《物理化学学报》2009,25(12):2493-2500
四苯基卟啉锌在完全无水的乙氰中发生自聚现象, 聚集体的形成可以通过稳态光谱来证实. 吸收光谱和荧光发射光谱的红移表明四苯基卟啉锌的聚集体是卟啉之间以头对头的方式排列, 即J-聚集体. 进一步研究表明聚集体的形成还依赖于溶剂. 光谱和激发态寿命的测定结果表明聚集体的辐射跃迁速率比单体快两倍, 这表明形成的J-聚集体存在超辐射. 四苯基卟啉锌的晶体呈现出杆状的结构. 通过X射线的结构分析, 提出了一个四苯基卟啉锌J-聚集体的结构模型. 四苯基卟啉锌中的一个苯基和相邻的四苯基卟啉锌中的吡咯垂直并通过C—H…π键相互作用. 最后讨论了乙氰配位后对四苯基卟啉锌中Zn—N键的影响.  相似文献   

17.
A new derivative of dioxouranium(VI) salen complex, [UO2(L)(pyridine)], where [L = N,N′-Bis(2-hydroxybenzylidene)-2,2-dimethyl-1,3-propanediamine] is synthesized and characterized by elemental analysis (C, H, N), FT-IR, ESI-MS spectrometry, UV/Vis, fluorescence, 1H and 13C NMR spectroscopy and thermal gravimetric (TG) study. Furthermore, the single crystal X-ray diffraction measurements of the complex were carried out at 100 and 273 K. The crystal structure measurements revealed that the complex has distorted pentagonal bipyramidal geometry with uranium atom located at the centre and bonded to two phenoxy oxygen and two azomethine nitrogen in tetradenate fashion and one nitrogen from pyridine making it seven coordinated. In addition, the photoluminescence property of the complex was also recorded.  相似文献   

18.
    
Three new uranyl polyphosphates, α‐K[(UO2)(P3O9)] ( 1 ), β‐K[(UO2)(P3O9)] ( 2 ), and K[(UO2)2(P3O10)] ( 3 ), were prepared by high‐temperature solid‐state reactions. The crystal structures of the compounds have been solved by direct methods: 1 – monoclinic, P21/m, a = 8.497(1), b = 15.1150(1), c = 14.7890(1) Å, β = 91.911(5)°, V = 1898.3(3) Å3, Z = 4, R1 = 0.0734 for 4181 unique reflections with |F0| ≥ 4σF; 2 – monoclinic, P21/n, a = 8.607(1), b = 14.842(2), c = 14.951(1) Å, β = 95.829(5)°, V = 1900.0(4) Å3, Z = 4, R1 = 0.0787 for 3185 unique reflections with |F0| ≥ 4σF; 3 – Pbcn, a = 10.632(1), b = 10.325(1), c = 11.209(1) Å, V = 1230.5(2) Å3, Z = 4, R1 = 0.0364 for 1338 unique reflections with |F0| ≥ 4σF. In the structures of 1 and 2 , phosphate tetrahedra share corners to form infinite [PO3]? chains, whereas, in the structure of 3 , tetrahedra form linear [P3O10]5? trimers. The structures are based upon 3‐D frameworks of U and P polyhedra linked by sharing common O corners. The infinite [PO3]? chains in the structures of 1 and 2 are parallel to [100] and [–101], respectively. The uranyl polyphosphate frameworks are occupied by host K+ cations.  相似文献   

19.
On allowing tetraethylammonium dihydrogen arsenate dihydrate to react with trimethyltin chloride, the title compound has been obtained and characterized by infrared, Mössbauer and NMR techniques. Its crystal structure has been determined and consists of layers containing both corner sharing AsO4H tetrahedra and trans-O2SnC3entities. It contains large cavities in which tetraethylamonium cations are located.  相似文献   

20.
Two new uranyl β-diketonate complexes [UO2(DBM)2(DEDPU)] (1) and [UO2(PMBP)2(DEDPU)](CH3C6H5)0.5 (2), (HDBM?=?dibenzoylmethane, HPMBP?=?1-phenyl-3-methyl-4-benzoyl-5-pyrazolone, DEDPU?=?N,N′-diethyl-N,N′-diphenylurea) were synthesized and characterized. The coordination geometries of the uranyl atoms in 1 and 2 are distorted pentagonal bipyramidal, coordinated by one oxygen atom of DBDPU molecule and four oxygen atoms of two chelating DBM molecules in 1 and PMBP molecules in 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号