首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using hydrothermal methods, two manganese arsenates have been synthesized and characterized by single crystal X‐ray diffraction. The products Mn5(AsO4)2(HAsO4)2 ?4H2O ( 1 ) and Mn2AsO4(OH) ( 2 ), the Mn end‐members of the minerals villyaellenite and sarkinite, respectively, have been obtained (crystal data 1 : monoclinic, C2/c, a = 18.109(4), b = 9.332(2), c = 9.809(2) Å, β = 96.172(4)?, Z = 4; 2 : monoclinic, P21/c, a = 10.219(2), b = 13.613(2), c = 12.780(2) Å, β = 108.834(2)?, Z = 16). In both compounds a three‐dimensional framework of edge‐sharing MnO polyhedra is observed. Based on the availability of the all Mn2containing form of villyaellenite ( 1 ), the ordering scheme of the impurity cations of the natural samples could be confirmed. Magnetic susceptibility measurements of 1 indicate the presence of high‐spin Mn2+ ions. The comparison of the data on sarkinite ( 2 ) with the data obtained from the natural sample indicates that the mineral has either a very high Mn content, or an absence of impurity cation ordering.  相似文献   

2.
Infrared and Raman Spectroscopy of the Isostructural Iodate Hydrates M(IO3)2 · 4 H2O (M = Mg, Ni, Co)-Crystal Structure of Cobalt Iodate Tetrahydrate The iodate tetrahydrates Mg(IO3)2 · 4 H2O, β-Ni(IO3)2 · 4 H2O, Co(IO3)2 · 4 H2O and their deuterated specimens were studied by X-ray, infrared and Raman spectroscopic methods. The title compounds are isostructural crystallising in the monoclinic space group P21/c (Z = 2). The crystal structure of Co(IO3)2 · 4 H2O (a = 836.8(5), b = 656.2(3), c = 850.2(5) pm and β = 100.12(5)°) has been refined by single-crystal X-ray methods (Robs = 3.08%, 693 unique reflections I0 > 2σ(I)). Isolated Co(IO3)2(H2O)4 octahedra form layers parallel (100). Within these layers, the two crystallographically different hydrate water molecules form nearly linear hydrogen bonds to adjacent IO3 ions (νOD of matrix isolated HDO of Co(IO3)2 · 4 H2O (isotopically diluted samples) 2443 (H3), 2430 (H2), and 2379 cm–1 (H1 and H4), –180 °C). Intramolecular O–H and intermolecular H…O distances were derived from the novel νOD vs. rOH and the traditional νOD vs. rH…O correlation curves, respectively. The internal modes of the iodate ions of the title compounds are discussed with respect to their coupling with the librations of the hydrate H2O molecules, the distortion of the IO3 ions, and the influence of the lattice potential.  相似文献   

3.
Zinc Iodates – Infrared and Raman Spectra, Crystal Structure of Zn(IO3)2 · 2 H2O The zinc iodates Zn(IO3)2 · 2 H2O and Zn(IO3)2 as well as α‐Co(IO3)2 · 2 H2O were studied by X‐ray, IR‐ and Raman spectroscopic methods. The crystal structure of the dihydrate, which is isostructural with the respective cobalt compound, was determined by X‐ray single‐crystal studies (space group P1, Z = 2, a = 490,60(4), b = 667,31(5), c = 1088,85(9) pm, α = 98,855(6), β = 91,119(7), and γ = 92,841(6)°, R1 = 2,55%, 2639 unique reflections I > 2σ(I)). Transconfigurated Zn(IO3)4(H2O)2 octahedra are threedimensionally connected via common IO3 ions parallel to [001] and hydrogen bonds parallel to [100] and [010], respectively. Anhydrous Zn(IO3)2 crystallizes in space group P21 (Z = 2) with a = 548,9(2), b = 512,4(1), c = 941,8(2) pm, and β = 90,5(3)°. The structure of Zn(IO3)2 is a monoclinically distorted variant of the structures of β‐Ni(IO3)2 (space group P63) and Co(IO3)2 (P3). The O–H … O–IO2 hydrogen bonds of the crystallographically different H2O molecules of the dihydrates (νOD (OD stretching modes of isotopically dilute samples) 2430, 2415, 2333 and 2300 cm–1, Zn(IO3)2 · 2 H2O, 90 K) are examples to the matter of fact that O … O distances are only a bad measure for the strength of hydrogen bonds. The infrared and Raman spectra as well as a group theoretical treatment are presented and discussed with respect to mutual exclusion principle (possible space groups), the strength of the hydrogen bonds and the distortion of the IO3 ions at the C1 lattice sites.  相似文献   

4.
By slow evaporation of solutions containing UO2(ClO4)2 and an excess of HClO4, single crystals of [UO2(ClO4)2(H2O)3] ( 1 ) and [UO2(H2O)5](ClO4)2 ( 2 ) were obtained and their structures were determined. From similar solutions prepared from stoichiometric amounts of UO3 and perchloric acid, crystals of [UO2(H2O)5](ClO4)2·2H2O ( 3 ) were obtained. The trihydrate (monoclinic, P21/c, a = 545.44(1) pm, b = 1811.09(5) pm, c = 1032.46(2) pm, β = 90.016(1)°) consists of uranyl ions, which are coordinated by two monodentate perchlorate ions and three water molecules. The pentahydrate (monoclinic, P21/n, a = 529.35(2) pm, b = 1645.43(6) pm, c = 1480.18(6) pm, β = 99.847(1)°) contains uranyl ions coordinated by five water molecules. The same structural unit can be found in the heptahydrate, whose structure was re‐determined (orthorhombic, Pbcn, a = 920.9(3) pm, b = 1067.9(3) pm, c = 1445.7(3) pm). In this structure, two molecules of water of crystallization are present.  相似文献   

5.
Synthesis, Structure, and Properties of Some Selenidostannates. II. [(C2H5)3NH]2Sn3Se7 · 0,25 H2O and [(C3H7)2NH2]4Sn4Se10 · 4 H2O The new selenidostannate hydrates [(C2H5)3NH]2Sn3Se7 · 0.25 H2O ( I ) and [(C3H7)2NH2]4Sn4Se10 · 4 H2O ( II ) were synthesized from an aqueous suspension of triethylammonium (tripropylammonium), tin, selenium I and in addition sulfur II at 130 °C. I crystallizes at ambient temperature in the monoclinic space group P21/n (a = 2069,3(4) pm, b = 1396,6(3) pm, c = 2342,8(5) pm, β = 114,68(3)°, Z = 8) and is characterized by two different anions, chains from edge‐sharing [Se3Se7]2– units and nets from trigonal SnSe5 bipyramids. II crystallizes at ambient temperature in the tetragonal space group I41/amd (a = 2150,0(3) pm, c = 1174,4(2) pm, Z = 4) and contains adamantane like [Sn4Se10]4–‐cages. The UV‐VIS spectra of the selenidostannates demonstrate that the absorption edges red shift as the dimensionality of the compounds is increased.  相似文献   

6.
Two new hybrid fluorides, {[(C2H4NH3)3NH]4+}2 · (H3O)+ · [Al7F30]9– ( I ) and {[(C2H4NH3)3NH]4+}2 · [Al7F29]8– · (H2O)2 ( II ), are synthesized by solvothermal method. The structure determinations are performed by single crystal technique. The symmetry of both crystals is triclinic, sp. gr. P 1, I : a = 9.1111(6) Å, b = 10.2652(8) Å, c = 11.3302(8) Å, α = 110.746(7)°, β = 102.02(1)°, γ = 103.035(4)°, V = 915.9(3) Å3, Z = 1, R = 0.0489, Rw = 0.0654 for 2659 reflections, II : a = 8.438(2) Å, b = 10.125(2) Å, c = 10.853(4) Å, α = 106.56(2)°, β = 96.48(4)°, γ = 94.02(2)°, V = 877.9(9) Å3, Z = 1, R = 0.0327, Rw = 0.0411 for 3185 reflections. In I , seven corner‐sharing AlF6 octahedra form a [Al7F30]9– anion with pseudo 3 symmetry; such units are found in the pyrochlore structure. The aluminum atoms lie at the corners of two tetrahedra, linked by a common vertex. In II , similar heptamers are linked in order to build infinite (Al7F29)n8– chains oriented along a axis. In both compounds, organic moieties are tetra protonated and establish a system of hydrogen bonds N–H…F with four Al7F309– heptamers in I and with three inorganic chains in II .  相似文献   

7.
The Chloride Nitrate PrCl2(NO3) · 5 H2O with Cationic and Anionic Complexes according to [PrCl2(H2O)6][PrCl2(NO3)2(H2O)4] Green single crystals of PrCl2(NO3) · 5 H2O have been obtained from an aqueous solution of PrCl3 and Pr(NO3)3. The crystal structure [monoclinic, P2/c, Z = 4, a = 1228.8(3), b = 648.4(1), c = 1266.0(4) pm, β = 91.91(3)°] contains cationic and anionic Pr3+ complexes according to [PrCl2(H2O)6][PrCl2(NO3)2(H2O)4]. Both nitrate groups of the anionic complex act as bidentate chelating ligands. Hydrogen bonds are observed with water molecules as donors and chlorine as well as oxygen atoms as acceptors.  相似文献   

8.
The title compound [La(phen)2(H2O)2(NO3)2](NO3) · 2(phen)(H2O) with phen = 1,10‐phenanthroline was prepared by the stoichiometric reaction of La(NO3)3 · 6 H2O and 1,10‐phenanthroline monohydrate in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 11.052(2), b = 13.420(2), c = 16.300(2) Å, α = 78.12(1)°, β = 88.77(1)°, γ = 83.03(1)°, Z = 2, R = 0.0488, wR2 = 0.1028) consists of [La(phen)2(H2O)2(NO3)2]2+ complex cations, NO3 anions, phen and H2O molecules. The La atom is 10‐fold coordinated by four N atoms of two bidentate chelating phen ligands and six O atoms of two H2O molecules and two bidentate chelating NO32– ligands with d(La–O) = 2.522–2.640 Å and d(La–N) = 2.689–2.738 Å. The intermolecular π‐π stacking interactions play an essential role in the formation of two different 2 D layers parallel to (001), which are formed by complex cations and uncoordinating phen molecules, respectively. The uncoordinated NO3 anions and H2O molecules are sandwiched between the cationic and phen layers.  相似文献   

9.
Dark blue plate‐like crystals of [Cu2(phen)2 · (H2O)2(OH)2](HCO3)2 · 6 H2O were obtained from a CH3OH–H2O solution containing CuCl2, 1,10‐phenanthroline (phen), sebacic acid and Na2CO3. The crystal structure (triclinic, P 1 (no. 2), a = 8.118(1), b = 9.624(1), c = 10.536(1) Å, α = 81.35(1)°, β = 88.51(1)°, γ = 75.77(1)°, Z = 1, R = 0.0332, wR2 = 0.0981 for 4163 observed reflections (F ≥ 2σ(F ) out of 4595 unique reflections) consists of divalent [Cu2(phen)2(H2O)2(OH)2]2+ complex cations, anionic (HCO3)22– dimers and H2O molecules. The divalent complex cations (d(Cu…Cu) = 2.905(1) Å) are centered at inversion centers. The Cu atoms are fivefold square‐pyramidally coordinated by two nitrogen and three oxygen atoms from one bidentate chelating phen ligand, two bridging hydroxide groups and one axial water molecule (d(Cu–N)phen = 2.021(2), 2.024(2) Å; d(Cu–O)OH = 1.941(1), 1.949(1) Å; d(Cu–O)H2O = 2.254(2) Å). The divalent complex cations are stacked to form 2 D layers parallel (001) with 1 D π‐π stacking interactions along [100] via the terminal phen rings. The dimeric (HCO3)22– anions and the hydrogen bonded H2O molecules are sandwiched between the 2 D layers.  相似文献   

10.
Ab Initio Calculation of the Tetracarbonatoscandate‐Ion in Na5[Sc(CO3)4] · 2 H2O. Single Crystal Structure Determination, Vibrational Spectra, and Thermal Decomposition Normal modes of the tetracarbonatoscandate‐ion, [Sc(CO3)4]5–, were determined by ab initio calculations and were compared with experimental data of Infrared‐ and Raman‐spectra of the compound Na5[Sc(CO3)4] · 2 H2O. A necessary redetermination of the structure with single crystal x‐ray diffraction data (tetragonal, P421c (Nr. 114), Z = 2, a = 746,37(4) pm, c = 1157,0(2) pm, VEZ = 644,5(1) 106 pm3) allows the discussion of existing hydrogen bonds. Determination of the thermal behaviour indicates a two‐stage decomposition reaction, but no corresponding intermediate could be isolated.  相似文献   

11.
Supramolecular aspects on Te(OH)6 as substitute for crystal‐water in adenine hydrate complexes and the first disodium ditellurate(VI) are reported. The co‐crystallate [Te(OH)6 · 2 adenine · 4 H2O] ( 1 ) has been prepared in 41% yield from the 1 : 1 mixing of Te(OH)6 with the nitrogenous base adenine. The adduct of infinite stacks of adenine molecules, Te(OH)6 and water not only proves that Te(OH)6 mimicks the role of water in the related hydrate adenine · 3 H2O but also shows that the inclusion of Te(OH)6 raises the number of HO–H and N–HO contacts and therefore increases the distance between the adenine rings to 3.31 Å in 1 in comparison to that in adenine trihydrate (3.22 Å). Additionally, the disodium ditellurate(VI) aggregate {[Te2(O)2(OH)6(ONa)2]2 [NaOH · 12.5 H2O]} ( 2 ) resulted from the reaction of 1 with 2 molar equivalents of aqueous NaOH. Dinuclear 2 represents the first X‐ray diffraction characterized example of a sodium tellurate(VI) constructed from [Te2O4(OH)6]2– dianions.  相似文献   

12.
Crystal Structure, Infrared and Raman Spectra of Copper Trihydrogenperiodate Monohydrate, CuH3IO6 · H2O The hitherto unknown compound CuH3IO6 · H2O was studied by X‐ray, IR‐ and Raman spectroscopic methods. The crystal structure was determined by X‐ray single‐crystal studies (space group P212121, Z = 4, a = 532.60(10), b = 624.00(10), c = 1570.8(3) pm, R1 = 1.85%, 1559 unique reflections (I > 2σ(I))). Isolated, meridionally configurated H3IO62– ions are coordinated to the copper ions forming double‐ropes in [100]. These ropes are connected in [010] and [001] by hydrogen bonds. The copper ions possess a square pyramidal co‐ordination with the hydrate H2O on top. The infrared and Raman spectra as well as group theoretical treatment are presented and discussed with respect to the strength of the hydrogen bonds and the co‐ordination of the CuO5(+1) polyhedra and the H3IO62– ions at the C1 lattice sites. The hydrogen bonds of the H2O molecules and H3IO62– ions (HO–H…O–IO5H3 and H2IO5O–H…O–IO5H3) greatly differ in strength, as shown from both the respective O…O distances: 282.6 and 298.6 pm (H2O), and 258.8, 259.7, and 270.9 pm (H3IO62–) and the OD stretching modes of isotopically dilute samples: 2498 and 2564 cm–1 (90 K) (HDO), and 1786, 2024, and 2188 cm–1 (H2DIO62–). The IO stretching modes of the H3IO62– ions (696–788 cm–1 and 555–658 cm–1, 295 K) display the different strength of the respective I–O and I–O(H) bonds (rI–O: 181.1–188.3 pm and 189.2–194.5 pm).  相似文献   

13.
Formation and Crystal Structure of FcCH( t ‐Bu)NHCH(Me)CH2OMe · LiI · Et2O The title compound FcCH(t‐Bu)NHCH(Me)CH2OMe · LiI · Et2O ( 1 · LiI · Et2O) was obtained by reaction of FcCH(t‐Bu)N(Li)CH(Me)CH2OMe with MeI in a molar ratio 1 : 1 in diethylether. The Li atom is substituted by an H atom yielding the secondary amine. The formation of the expected N‐methyl substituted species could not be observed. 1 creates monomeric molecules with four coordinate Li atoms as a result of Li–N and Li–O interactions of the corresponding atoms of the ferrocenyl ligand and a solvent molecule. 1 · LiI · Et2O: Space group P212121, Z = 4, lattice dimensions at –60 °C: a = 10.492(2), b = 13.225(2), c = 18.846(3) Å, β = 90°, R1 = 0.0478, wR2 = 0.0801.  相似文献   

14.
Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)] · 7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)] · 4H2O (NDUS1), and one uranyl selenate‐selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L ‐cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4) Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two‐dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two‐dimensional uranyl selenate‐selenite sheets with a U/Se ratio of 1/2. In‐situ reaction of the L ‐cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L ‐cystine, balancing the charge of the sheets.  相似文献   

15.
Rb(H2NC10H6SO3) · H2O crystallizes in space group P21 with two formula units in the asymmetric unit, the crystal being twinned by a 180° rotation about [1 0 0]. The structure was determined from X‐ray diffraction data, and refined, based on two twin components, to yield a final R value of 0.0557 for 2754 reflections. The structure consists of alternating layers of aminonaphthalenesulfonate and rubidium ions. There are two distinct rubidium environments, the metal ions linked by the sulfonate groups and bridging water molecules into an infinite sheet. The sulfonate groups are bidentate, monodentate and bridging, all oxygen atoms being bound to at least one metal. The amino groups do not participate in coordination to the metal. Aromatic moieties from neighboring hydrophilic metallo‐layers interleave to form the hydrophobic layers. There is some similarity to the analogous sodium and potassium structures, however the rubidium compound is distinguished by an infinite cationic layer, rather than columns observed for the other two structures.  相似文献   

16.
The reaction of ammonium heptamolybdate with hydrazine sulfate in an aqueous solution of glycine at room temperature yielded colorless crystals of (NH4)4[(NH3CH2CO)2(Mo8O28)] · 2 H2O. The crystal is monoclinic, space group C2/c (no. 15), a = 17.234 Å, b = 10.6892 Å, c = 18.598 Å, β = 108.280°, V = 3253.2 Å3, Z = 4. The crystal structure contains ammonium cations and isolated octamolybdate(4–) anions, [(NH3CH2CO)2(Mo8O28)]4–, with two zwitterionic glycine molecules as ligands.  相似文献   

17.
Carbonate Hydrates of the Heavy Alkali Metals: Preparation and Structure of Rb2CO3 · 1.5 H2O und Cs2CO3 · 3 H2O Rb2CO3 · 1.5 H2O and Cs2CO3 · 3 H2O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four‐circle diffractometer data, the crystal structures were determined (Rb2CO3 · 1.5 H2O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, β = 120.133(8)°, VEZ = 1109.3(6) · 106 pm3; Cs2CO3 · 3 H2O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, β = 90.708(14)°, VEZ = 393.9(2) · 106 pm3). Rb2CO3 · 1.5 H2O is isostructural with K2CO3 · 1.5 H2O. In case of Cs2CO3 · 3 H2O no comparable structure is known. Both structures show [(CO32–)(H2O)]‐chains, being connected via additional H2O forming columns (Rb2CO3 · 1.5 H2O) and layers (Cs2CO3 · 3 H2O), respectively.  相似文献   

18.
The blue tetranuclear CuII complexes {[Cu(bpy)(OH)]4Cl2}Cl2 · 6 H2O ( 1 ) and {[Cu(phen)(OH)]4(H2O)2}Cl4 · 4 H2O ( 2 ) were synthesized and characterized by single crystal X‐ray diffraction. ( 1 ): P 1 (no. 2), a = 9.240(1) Å, b = 10.366(2) Å, c = 12.973(2) Å, α = 85.76(1)°, β = 75.94(1)°, γ = 72.94(1)°, V = 1152.2(4) Å3, Z = 1; ( 2 ): P 1 (no. 2), a = 9.770(3) Å, b = 10.118(3) Å, c = 14.258(4) Å, α = 83.72(2)°, β = 70.31(1)°, γ = 70.63(1)°, V = 1252.0(9) Å3, Z = 1. The building units are centrosymmetric tetranuclear {[Cu(bpy)(OH)]4Cl2}2+ and {[Cu(phen)(OH)]4(H2O)2}4+ complex cations formed by condensation of four elongated square pyramids CuN2(OH)2Lap with the apical ligands Lap = Cl, H2O, OH. The resulting [Cu42‐OH)23‐OH)2] core has the shape of a zigzag band of three Cu2(OH)2 squares. The cations exhibit intramolecular and intermolecular π‐π stacking interactions and the latter form 2D layers with the non‐bonded Cl anions and H2O molecules in between (bond lengths: Cu–N = 1.995–2.038 Å; Cu–O = 1.927–1.982 Å; Cu–Clap = 2.563; Cu–Oap(OH) = 2.334–2.369 Å; Cu–Oap(H2O) = 2.256 Å). The Cu…Cu distances of about 2.93 Å do not indicate direct interactions, but the strongly reduced magnetic moment of about 2.74 B.M. corresponds with only two unpaired electrons per formula unit of 1 (1.37 B.M./Cu) and obviously results from intramolecular spin couplings (χm(T‐θ) = 0.933 cm3 · mol–1 · K with θ = –0.7 K).  相似文献   

19.
Syntheses, Crystal Structure, and Properties of the Cage‐like, Hexaacidic P12S12N8(NH)6 · 14 H2O and its Salts Li6[P12S12N14] · 26 H2O, (NH4)6[P12S12N14] · 10 H2O, and K6[P12S12N14] · 8 H2O The cage‐like acid P12S12N8(NH)6 · 14 H2O was obtained by the reaction of KSCN with P4S10 via the formation of K6[P12S12N14] · 8 H2O and subsequent ion exchange reactions in aqueous solution. Starting from the acid the salts Li6[P12S12N14] · 26 H2O and (NH4)6[P12S12N14] · 10 H2O were synthesized. According to X‐ray single‐crystal structure analyses the compounds are built up by isosteric P–N cages [P12S12N[3]8N[2]6]6–. Each of them is made up of twelve P3N3 rings, which exclusively exhibit the boat conformation. The cages have the idealized symmetry 2/m3; P12S12N8(NH)6 · 14 H2O: P1, a = 1119.11(7), b = 1123.61(7), c = 1125.80(6) pm, α = 80.186(4), β = 60.391(4), γ = 60.605(4)°, Z = 1; Li6[P12S12N14] · 26 H2O: Fm3, a = 1797.4(1) pm, Z = 4; (NH4)6[P12S12N14] · 10 H2O: P63, a = 1153.2(1), c = 2035.6(2) pm, Z = 2; K6[P12S12N14] · 8 H2O: R3c, a = 1142.37(5), c = 6009.6(3) pm, Z = 6. In the crystal the cages of the acid are crosslinked via hydrate molecules by hydrogen bonds. The cations in the salts show a high‐mobility and are located between the cages.  相似文献   

20.
The Crystal Structure of the Hydrated Cyano Complexes NMe4MnII[(Mn, Cr)III(CN)6] · 3 H2O and NMe4Cd[MIII(CN)6] · 3 H2O (MIII = Fe, Co): Compounds Related to Prussian Blue The crystal structures of the isotypic tetragonal compounds (space group I4, Z = 10) NMe4MnII · [(Mn, Cr)III(CN)6] · 3 H2O (a = 1653.2(4), c = 1728.8(6) pm), NMe4Cd[Fe(CN)6] · 3 H2O (a = 1642.7(1), c = 1733.1(1) pm) and NMe4Cd[Co(CN)6] · 3 H2O (a = 1632.1(2), c = 1722.4(3) pm) were determined by X‐rays. They exhibit ⊥ c cyanobridged layers of octahedra [MIII(CN)6] and [MIIN4(OH2)2], which punctually are interconnected also || c to yield altogether a spaceous framework. The MII atoms at the positions linking into the third dimension are only five‐coordinated and form square pyramids [MIIN5] with angles N–MII–N near 104° and distances of Mn–N: 1 × 214, 4 × 219 pm; Cd–N: 1 × 220 resp. 222, 4 × 226 resp. 228 pm. Further details and structural relations within the family of Prussian Blue are reported and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号