首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trans-methyl-azido-bis(triisopropylphosphine)platinum(II), [PtN3(CH3)(PiPr3)2] [PtN3(CH3)(PiPr3)2] has been prepared by reductive elimination of ethane from [Pt(CH3)3N3]4 in the presence of triisopropylphosphine at 80 °C. The complex is characterized by IR and NMR spectroscopy and by crystal structure determination, as well as by ab initio calculations. [PtN3(CH3)(PiPr3)2], which is in trans-configuration here, crystallizes in the monoclinic space group P21, Z = 2, and with the lattice dimensions a = 806.9(1), b = 1384.3(1), c = 1093.8(1) pm, β = 94.107(10)°.  相似文献   

2.
From the reaction of PtCl2(hex) (hex = hexa‐1,5‐diene) with LiC6F5 in diethyl ether, the complex [Pt{CH(CH2C6F5)CH2CH2CH=CH2}(C6F5)(OH2)] ( 1 ) was isolated. The crystal structure (monoclinic, C2/c (no. 15), Z = 8, a = 15.241(3), b = 16.579(2), c = 16.225(2) Å, β = 111.12(2)°) shows a complex with square planar coordination around platinum with a template formed 1‐pentafluorophenylhex‐5‐en‐2‐yl ligand, and C6F5 and aqua ligands trans to the double bond and alkyl carbon, respectively.  相似文献   

3.
Mechanistic details for the formation of methane from the title compound as well as the combined elimination of (CH3)2S/CH4 are derived from various mass‐spectrometric experiments including deuterium‐labeling studies and DFT calculations. For the first process, i.e., methane formation, we have identified three competing pathways in which the intact, Pt‐bonded methyl group combines with a H‐atom that originates from a phenyl substituent (ca. 7%), the dimethyl sulfide ligand (ca. 41%), and a methyl group of the diazabutadiene backbone (ca. 52%). In contrast, in the combined (CH3)2S/CH4 elimination, the methane is specifically formed from the Pt‐bound CH3 group and a H‐atom provided by one of the phenyl groups (‘cyclometalation’).  相似文献   

4.
Quantum‐mechanical calculations were carried out at the MP4(SDQ)//MP2 level of theory to determine the energies and reaction mechanism for the carbonyl insertion reaction (second step in the olefin hydroformylation catalytic cycle), using a heterobimetallic Pt(SnCl3)(PH3)2(CO)(CH3) compound as a model catalytic species. The results show that this reaction proceeds through a three‐center transition state, with an activation energy of 26.4 kcal/mol, followed by an intramolecular rearrangement to the square‐planar cis‐Pt(SnCl3)(PH3)2(MeCO) metal–acyl product. Analysis of the nature of the bonds shows that there is a negligible participation of the tin d‐orbitals in the formation of the Pt Sn bond. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 668–674, 2000  相似文献   

5.
Synthesis and Structural Studies of Aluminum Dialkylamines and Dialkylamides: N‐Chirality of (CH3)3AlNHRR′ and cis‐trans ‐Isomerism at X2AlNRR′ (X = CH3, Cl, H) Aluminum dialkylamines and dialkylamides were prepared from Al(CH3)3 and NH(CH3)R′ (R′: –C2H5, –tC4H9) and characterized by elemental analyses, 1H‐, 13C‐, and 27Al‐NMR spectroscopy. The crystal structures of [(CH3)2AlN(CH3)(–tC4H9)]2 ( IV ), [Cl2AlN(CH3)(C2H5)]2 ( V ), and [H2AlN(CH3)(C2H5)] ( VI‐trans and VI‐cis ) are discussed.  相似文献   

6.
LiE(SiMe3)2 (E = P, As) as Building Unit of Molybdenum Complexes with EH Ligands The complex [{CpMo(CO)2}2(μ‐H)(μ‐PH2)] ( 1 ) can be obtained in a one‐pot reaction using [CpMo(CO)2]2, LiP(SiMe3)2, MeOH and HBF4. Experiments to synthesize [{CpMo(CO)2}2(μ‐H)(μ‐AsH2)] in an analogous reaction sequence using [CpMo(CO)2]2 and LiAs(SiMe3)2 failed. However, the products ‐[{CpMo(CO)2}2(μ, η2‐As2)] and [{CpMo(CO)2}2(μ‐H)(μ4‐As){CpMo(CO)2}24, η1:η1‐As2H){CpMo(CO)2}2(μ‐H)] ( 3 ) could be obtained via this reaction. The deprotonated derivative of 1 , K[{CpMo(CO)2}2(μ‐PH2)] ( 2 ), which can be obtained by reaction of 1 with KH, doesn't react with GaCl3 under KCl elimination as expected. Instead, the Lewis acid/base adduct K[{CpMo(CO)2}2(μ‐PH2)(GaCl3)] ( 4 ) is formed, which adopts a polymeric chain structure in the solid state. The structural and the spectroscopic data of the products are discussed.  相似文献   

7.
Single crystals of octahedral mer‐cis‐[CoIIII(CH3)2(PMe3)3] ( 1 ) and square planar trans‐[NiIICl(CH3)(PMe3)2] ( 2 ), were obtained from solvent mixtures (methylcylohexane / pentane 1:1) and have been analyzed by X‐ray crystallography for the first time.  相似文献   

8.
The reactions of Zn(CF3)Br · 2 CH3CN, Cd(CF3)2 · 2 CH3CN or Bi(CF3)3/AlCl3 with tertiary amines lead to the formation of quaternary ammonium salts of the general formula [R3NCF2H]X. The reaction of 4‐N,N‐dimethylaminopyridine with Zn(CF3)Br · 2 CH3CN yields (N‐difluoromethyl)‐4‐N,N‐dimethylaminopyridinium bromide. Bi(CF3)3/AlCl3 reacts with 1,4‐diazabicyclo[2.2.2]octane to form a mixture of mono‐ and bis(difluoromethylammonium) salts.  相似文献   

9.
[{(CH3)3Si}3C–Li–C{Si(CH3)3}3][Li · 3(OC4H8)] and {(CH3)3Si}3C–Li · O=C(Si(CH3)3)2, two New Adducts of Lithium Trisylmethanide Sublimation of (Tsi–Li) · 2 THF (Tsi = –C(Si(CH3)3)3) at 180 °C and 10–4 hPa gives (Tsi–Li) · 1.5 THF in very low yield. The X‐ray structure determination shows an almost linear [Tsi–Li–Tsi] anion connected by short agostic Li…C contacts with the threefold THF‐coordinated Li‐cation. Base‐free Tsi–Li, solved in toluene is decomposed by oxygen, forming the strawberry‐colored ketone O=C(SiMe3)2, which forms an 1 : 1 adduct with undecomposed Tsi–Li. The X‐ray structure elucidation of this compound is also discussed.  相似文献   

10.
Treatment of Pt(PPh3)4 with N,N‐dimethylthiocarbamoyl chloride, Me2NC(=S)Cl, in dichloromethane at ?20 °C processes the oxidative addition reaction to produce platinum complex [Pt(PPh3)21‐SCNMe2)(Cl)], 2 with releasing two triphenylphosphine molecules. The 31P{1H} NMR spectra of complex 2 shows the dissociation of the triphenylphosphine ligand to form diplatinum complex [Pt(PPh3)Cl]2(μ,η2‐SCNMe2)2, 3 in which the two SCNMe2 ligands coordinated through carbon to one metal center and bridging the other metal through sulfur. Complex 2 is characterized by X‐ray diffraction analysis.  相似文献   

11.
The reaction of the electronically unsaturated platina‐β‐diketone [Pt2{(COMe)2H}2(μ‐Cl)2] ( 1 ) with Ph2PCH2CH2CH2SPh ( 2 ) leads selectively to the formation of the acetyl(chlorido) platinum(II) complex (SP‐4‐3)‐[Pt(COMe)Cl(Ph2PCH2CH2CH2SPh‐κPS)] ( 4 ) having the γ‐phosphinofunctionalized propyl phenyl sulfide coordinated in a bidentate fashion (κPS). In boiling benzene complex 4 undergoes decarbonylation yielding the methyl(chlorido) platinum(II) complex (SP‐4‐3)‐[PtMeCl(Ph2PCH2CH2CH2SPh‐κPS)] ( 6 ). However, the reaction of 1 with the analogous γ‐diphenylphosphinofunctionalized propyl phenyl sulfone Ph2PCH2CH2CH2SO2Ph ( 3 ) affords the acetyl(chlorido) platinum(II) complex (SP‐4‐4)‐[Pt(COMe)Cl(Ph2PCH2CH2CH2SO2Ph‐κP)2] ( 5 ). In boiling benzene complex 5 undergoes a CO extrusion yielding (SP‐4‐4)‐[PtMeCl(Ph2PCH2CH2CH2SO2Ph‐κP)2] ( 8 ) whereas in presence of 1 the formation of the carbonyl complex (SP‐4‐3)‐[PtMeCl(CO)(Ph2PCH2CH2CH2SO2Ph‐κP)] ( 7 ) is observed. Addition of Ag[BF4] to complex 5 leads to the formation of the cationic methyl(carbonyl) platinum(II) complex (SP‐4‐1)‐[PtMe(CO)(Ph2PCH2CH2CH2SO2Ph‐κP)2][BF4] ( 9 ). All complexes were characterized by microanalysis and NMR spectroscopy (1H, 13C, 31P) and complexes 4 and 6 additionally by single‐crystal X‐ray diffraction analyses.  相似文献   

12.
The work reports the unexpected reaction of diphenyldibromo antimonates (III) with PtCl2 and cis‐[PtCl2(PPh3)2]. The reaction gives triphenylstibine containing PtII complexes viz. cis‐[PtBr2(SbPh3)2] ( 1 ), trans‐[[PtBr(Ph)(SbPh3)2] ( 2 ), [NMe4][PtBr3(SbPh3)] ( 3 ), and cis‐[PtBr2(PPh3)(SbPh3)] ( 4 ). All the complexes were characterised by elemental analyses, IR, Raman, 195Pt NMR, FAB mass spectroscopy and X‐ray crystallography. A plausible mechanism via the phenyl migration is proposed for the formation of these complexes. The average Pt–Br distance in 1 is 2.456(2) Å, in 2 2.496 Å(trans to Ph) while in 3 it is 2.476 Å (trans to Sb) implying a comparable trans influence of Ph3Sb and Ph3P.  相似文献   

13.
Oxidative addition of 2‐phenylethylbromide (PhCH2CH2Br) to dimethylplatinum(II) complexes [PtMe2(NN)] ( 1a , NN = 2,2′‐bipyridine (bpy); 1b , NN = 1,10‐phenanthroline (phen)) afforded the new organoplatinum(IV) complexes [PtMe2(Br)(PhCH2CH2)(bpy)], as a mixture of trans ( 2a ) and cis ( 3a ) isomers, and [PtMe2(Br)(PhCH2CH2)(phen)], as a mixture of trans ( 2b ) and cis ( 3b ) isomers, respectively. The new Pt(IV) complexes were readily characterized using multinuclear (1H and 13C) NMR spectroscopy and elemental microanalysis. The crystal structure of 2a was further determined using X‐ray crystallography indicating an octahedral geometry around the platinum centre. A comparison of reactivity of RCH2Br reagents (R = CH3, Ph or PhCH2) in their oxidative addition reactions with complex 1a , with an emphasis on the effects of the R groups of alkyl halides, was also conducted using density functional theory.  相似文献   

14.
The mechanism of the gas-phase reaction OH with CH2=C(CH3)CH2OH (2-methyl-2-propen-1-ol) has been elucidated using high-level ab initio method, i.e., CCSD(T)/6-311++g(d,p)//MP2(full)/6-311++g(d,p). Various possible H-abstraction and addition–elimination pathways are identified. The calculations indicate that the addition–elimination mechanism dominates the OH+MPO221 reaction. The addition reactions between OH radicals and CH2=C(CH3)CH2OH begin with the barrierless formation of a pre-reactive complex in the entrance channel, and subsequently the CH2(OH)C(CH3)CH2OH (IM1) and the CH2C(OH)(CH3)CH2OH (IM2) are formed by OH radicals’ electrophilic additions to the double bond. IM1 can easily rearrange to IM2 via a 1,2-OH migration. Subsequently, rearrangement of IM2 to form (CH3)2C(OH)CH2O (IM11) followed by dissociation to HCHO + (CH3)2COH (P21) is the most favorable pathway. The decomposition of IM2 to CH2OH + CH2=C(OH)CH3 (P16) is the secondary pathway. The other pathways are not expected to play any important role in forming final products.  相似文献   

15.
The enthalpy of the reaction: Pt(PPh3)2(CH2CH2)(cryst.) + CS2(g) → Pt(PPh3)2(CS2)(cryst.) + CH2CH2(g) has been determined as ΔH = ? 4.40 ± 2.2 kJ mol?1 from solution calorimetry, and the bond dissociation energy D(PtCS2) shown to be slightly greater than D(PtC2H4).  相似文献   

16.
尹汉东  王传华  邢秋菊 《中国化学》2005,23(12):1631-1636
Three bismuth(Ⅲ) complexes Bi(1,10-phen)[S2CN(CH3)2]2(NO3) (1), {Bi(S2COCH3)[S2CNC6Hs(CH3)]2}2 (2) and [Bi(S2CNBu2)2(CH3OH)(NO3)]∞ (3) were synthesized and characterized by elemental analysis and IR spectra. Their crystal structures were determined by X-ray single crystal diffraction analysis. Studies show that complex 1 has a monomeric structure with the central bismuth atom eight-coordinated in a capped distorted pentagonal bipyramidal geometry. The complex 2 takes centrosymmetric dimeric structure and the bismuth atoms are seven-coordinated in distorted pentagonal bipyramidal geometry.In complex 3, the bismuth atoms are seven-coordinated in distorted pentagonal bipyramidal geometry by bridging nitrate O atoms and the resulting structure is onedimensional infinite chain polymer.  相似文献   

17.
Treatment of trans-Pt(COCOPh)(Cl)(PPh3)2 (1a) with AgBF4in THF led to the formation of a metastatic complex trans-[Pt(COCOPh)(THF)(PPh3)2](BF4) (2) which readily underwent ligand substitution to give a cationic aqua complex trans-[Pt(COCOPh)(OH2)(PPh3)2](BF4) (5a). Complex 5a has been characterized spectroscopically and crystallographically. Analogous reaction of trans-Pt(COCOOMe)(Cl)(PPh3)2 (1b) with Ag(CF3SO3) in dried CH2C12 was found first to yield a methoxyoxalyl triflato complextrans-Pt(COCOOMe)(OTf)(PPh3)2 (6). Attempts to crystallize the triflato product in CH2-cl2hexane under ambient conditions also afforded an aqua complex of the triflate salt f/wu-[Pt(COCOOMe)(OH2)(PPhj)2](CF3SO3) (5b). Complex 5a in a noncoordinating solvent such as CH2C12 or CHCl3 suffered spontaneous decarbonylation to form first cis-[Pt(COPh)(CO)(PPh3)2l(BF4) (3a) then the thermodynamically stable isomer trans-[Pt(COPh)(CO)(PPh3)2](BF4) (3b). Crystallization of complex 3b under ambient conditions resulted in an aqua benzoyl complex trans-[Pt(COPh)(OH2)(PPh3)2](BF4) (7). The replacement of the H2O ligand in complex 7 by CO was done simply by bubbling CO into the solution of 7. The single crystal structures of 5b and 7 have been determined by X-ray diffraction. The distances of the Pt-O bonds in 5a, 5b, and 7 support that the aqua ligand is a weak donor in such cationic aquaorganoplatinum(lI) complexes, in agreement with their lability to the substitution reactions.  相似文献   

18.
Products of the reaction between CH3N(PCl3)(BCl3) and AsF3 are BF3, AsCl3 and N,N′-dimethyldiazafluorophosphetidine IV. [(CH3)2NPCl3][BCl4] reacts with AsF3 to give dimethylaminotetrafluorophosphorane VI. Preparation and NMR data of IV and VI are given.  相似文献   

19.
Novel tetrameric rhenium(V) complexes have been prepared from [ReNCl2(PPh3)2] and [ReN(PMe2Ph)(S2CNEt)2], respectively. [ReNCl2(PPh3)2] reacts with 1.5 equivalents of KS2CNEt2 in methanol to yield the unusual dark red species [{cyclo-ReN}4(S2CNEt2)6(MeOH)2(PPh3)2][BPh4]2 · CH2Cl2 · 2 H2O ( 1 ). The crystal structure of the tetramer (triclinic, space group P1, a = 13.842(2), b = 15.213(2), c = 16.796(3) Å, α = 67.88(1), β = 70.90(1), γ = 88.05(1)°, U = 3080.2(8) Å3, Z = 1) shows four rhenium atoms in a square configuration which are bridged via linear asymmetric Re≡N–Re groups with bond lengths of about 169 and 203 pm. The molecule contains a centre of symmetry with two distinct octahedral rhenium environments. The first rhenium environment contains two bidentate dithiocarbamate ligands which complete the octahedral geometry and the second contains a bidentate dithiocarbamate ligand, coordinated methanol and has retained a single phosphine coligand. A symmetric compound containing the {cyclo-ReN}4 core is obtained from the reaction of [ReN(PMe2Ph)(S2CNEt2)2] with Al2Cl6 in acetone. [{cyclo-ReN}4(S2CNEt2)4Cl4(PMe2Ph)4] · 2 acetone ( 2 ) forms red crystals (monoclinic, space group C2/c, a = 21.432(6), b = 13.700(3), c = 28.060(9) Å, β = 102.37(1)°, U = 8048(4) Å3, Z = 4) with each rhenium atom coordinated by a bidentate dithiocarbamato, a phosphine and a chloro ligand. The non-planar 8-membered {ReN}4 ring contains asymmetric Re≡N–Re bridges (mean values: 1.69 Å and 2.029 Å, respectively). In contrast, reaction of [ReNCl(S2CNEt2)(PMe2Ph)2] with one equivalent of K[S2CN(Me)CH2CH2NMe3]I gave the mixed dithiocarbamato-cation [ReN(S2CNEt2)(S2CN(Me)CH2CH2NMe3)(PMe2Ph)]+ ( 3 ) which was isolated as a tetraphenylborate salt.  相似文献   

20.
The dimethyl platinum(II) complex containing mixed ligands, cis-[Pt(CH3)2(PEt3)(AsPh3)] reacted with one equivalent of hydrogen chloride yielding trans-[PtCl(CH3)(PEt3)(AsPh3)]. The X-ray crystal structure of the molecule shows the trans orientation of the PEt3 and AsPh3 ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号