首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A fluorescent hydroxyiminonicotinonitile (HINT) coordinating group can be incorporated into self-assembling ligand scaffolds, and shows metal-selective assembly and enhanced fluorescence. The assembly process is dependent on ligand coordination angle, and coordination only occurs for oxophilic first row transition metal ions, with affinity enhanced by the supramolecular assembly process. The ligands are weakly emissive, and show strong enhancement in fluorescence upon Zn2+ coordination, whereas Co2+ or Fe2+ cause complete quenching.  相似文献   

2.
Fluorescent probes for sensing fundamental properties of biomolecular environment, such as polarity and hydration, help to study assembly of lipids into biomembranes, sensing interactions of biomolecules and imaging physiological state of the cells. Here, we summarize major efforts in the development of probes based on two photophysical mechanisms: (i) an excited-state intramolecular charge transfer (ICT), which is represented by fluorescent solvatochromic dyes that shift their emission band maximum as a function of environment polarity and hydration; (ii) excited-state intramolecular proton transfer (ESIPT), with particular focus on 5-membered cyclic systems, represented by 3-hydroxyflavones, because they exhibit dual emission sensitive to the environment. For both ICT and ESIPT dyes, the design of the probes and their biological applications are summarized. Thus, dyes bearing amphiphilic anchors target lipid membranes and report their lipid organization, while targeting ligands direct them to specific organelles for sensing their local environment. The labels, amino acid and nucleic acid analogues inserted into biomolecules enable monitoring their interactions with membranes, proteins and nucleic acids. While ICT probes are relatively simple and robust environment-sensitive probes, ESIPT probes feature high information content due their dual emission. They constitute a powerful toolbox for addressing multitude of biological questions.  相似文献   

3.
The total biological synthesis of SrCO3 crystals of needlelike morphology arranged into higher order quasi-linear superstructures by challenging microorganisms such as fungi with aqueous Sr2+ ions is described. We term this procedure "total biological synthesis" since the source of carbonate ions that react with aqueous Sr2+ ions is the fungus itself. We believe that secretion of proteins during growth of the fungus Fusarium oxysporum is responsible for modulating the morphology of strontianite crystals and directing their hierarchical assembly into higher order superstructures.  相似文献   

4.
Specific interactions with phospholipids are often critical for the function of proteins or drugs, but studying these interactions at high resolution remains difficult, especially in complex membranes that mimic biological conditions. In principle, molecular interactions with phospholipids could be directly probed by solid-state NMR (ssNMR). However, due to the challenge to detect specific lipids in mixed liposomes and limited spectral sensitivity, ssNMR studies of specific lipids in complex membranes are scarce. Here, by using purified biological 13C,15N-labeled phospholipids, we show that we can selectively detect traces of specific lipids in complex membranes. In combination with 1H-detected ssNMR, we show that our approach provides unprecedented high-resolution insights into the mechanisms of drugs that target specific lipids. This broadly applicable approach opens new opportunities for the molecular characterization of specific lipid interactions with proteins or drugs in complex fluid membranes.  相似文献   

5.
Abstract The fluorescence intensity of the extrinsic chromophore 1-anilino-naphthalene-8-sulfonate (ANS) bound to pea chloroplast fragments shows a sigmoidal rise as the pH of the suspending medium is decreased by the addition of HC1. The abrupt increase occurs at pH – 4.5. A 70% decrease in the maximal fluorescence intensity (pH range 3.5-4.5) of bound ANS was observed when soluble chloroplast proteins were removed by washing with water. Extraction of chloroplast membranes with 6 M guanidine-HC1 abolishes the acid–induced enhancement of ANS fluorescence. However, the subsequent removal of lipids (by 80% acetone extraction) from the guanidine-HC1-extracted naked membranes restores the acid-induced fluorescence increase. These results suggest that ANS binds mainly to the surface of the chloroplast membrane and the fluorescence changes of ANS by acidification mainly reflect the changes in the associated proteins. The lack of enhancement of the fluorescence of ANS by acidification of the guanidine-HCl treated membranes and the recovery of the acid-induced fluorescence rise after extraction of the lipids from the guanidine-HCl treated membranes suggest that the boundary lipids somehow prevent the entry of the ANS molecules into the hydrophobic interior of the naked membrane. The lipid-depleted, guanidine-HCl extracted naked membrane fragments do not show any shift in the position of the peak of emission of ANS (λ= 470 nm) upon acidification as the lipid-depleted preparations without guanidine-HCl treatment do (shift from 460 to 470 nm). Divalent cations (Mn2+, Ca2+, Mg2+) also increased ANS fluorescence intensities when added to both types of lipid-depleted chloroplast preparations. A comparative analysis of ANS fluorescence bound to the lipid-depleted and guanidine-HCl treated chloroplast fragments with that of just lipid-depleted fragments shows that the acidification of the latter brings about a greater change in the value of the relative binding sites (n) and the dissociation constant kd of ANS than the protonation of the former. The role of chloroplast protein and lipid components in the structural changes of the thylakoid membrane imposed by external perturbations is discussed.  相似文献   

6.
The self‐assembly of triazole amphiphiles was examined in solution, the solid state, and in bilayer membranes. Single‐crystal X‐ray diffraction experiments show that stacked protonated triazole quartets (T4) are stabilized by multiple strong interactions with two anions. Hydrogen bonding/ion pairing of the anions are combined with anion–π recognition to produce columnar architectures. In bilayer membranes, low transport activity is observed when the T4 channels are operated as H+/X? translocators, but higher transport activity is observed for X? in the presence of the K+‐carrier valinomycin. These self‐assembled superstructures, presenting intriguing structural behaviors such as directionality, and strong anion encapsulation by hydrogen bonding supported by vicinal anion–π interactions can serve as artificial supramolecular channels for transporting anions across lipid bilayer membranes.  相似文献   

7.
A straightforward strategy for assembling polymeric dimers from amphiphilic nanoparticles is reported. Amphiphilic polymeric nanoparticles with a mixed‐shell of PEO/P2VN blocks and a flexible core of PAA blocks are fabricated by a non‐covalent crosslinking method. Uniform polymeric dimers are efficiently and simply obtained via hydrophobic interactions under optimized conditions in selective solvent. The steric hindrance generated by reorganization of hydrophilic polymer brushes during the interparticle association is critical for morphological selectivity in the assembly. General applicability offers the possibility to organize functional NPs into superstructures with well‐defined geometry and association numbers.  相似文献   

8.
The chirality found in living organisms is one of unsolved mysteries on Earth. It is crucial to understand the manner in which small achiral molecules evolve into helical superstructures in the absence of chiral components because this process can provide important insights regarding the origin of chirality in nature. 1) the uncommon helical assembly of an achiral trigonal chromophore into helical nanostructures with aggregation‐induced emission enhancement (AIEE) characteristics and 2) the tunability of the helical pitch and fluorescence intensity in response to light is reported. The Rietveld refinement of X‐ray diffraction (XRD) patterns and the growth process suggest that a striking transformation from an achiral to an asymmetric molecule can occur as a result of specific interactions with certain solvents, presumably leading to the unique helical assembly. More importantly, exposure to UV or visible light promoted not only the formation of irregular helical structures with a wide range of pitch lengths but also an increase in fluorescence intensity.  相似文献   

9.
Intricate superstructures possess unusual structural features and promising applications. The preparation of superstructures with single-crystalline nature are conducive to understanding the structure–property relationship, however, remains an intriguing challenge. Herein we put forward a new hierarchical assembly strategy towards rational and precise construction of intricate single-crystal superstructures. Firstly, two unprecedented superclusters in Rubik's cube's form with a size of ≈2×2×2 nm3 are constructed by aggregation of eight {Pr4Sb12} oxohalide clusters as secondary building units (SBUs). Then, the Rubik's cubes further act as isolable tertiary building units (TBUs) to assemble diversified single-crystal superstructures. Importantly, intermediate assembly states are captured, which helps illustrate the evolution of TBU-based superstructures and thus provides a profound understanding of the assembly process of superstructures at the atomic level.  相似文献   

10.
Pawlak M  Grell E  Schick E  Anselmetti D  Ehrat M 《Faraday discussions》1998,(111):273-88; discussion 331-43
A method for the functional immobilization of Na,K-ATPase-rich membrane fragments on planar metal oxide waveguides has been developed. A novel optical technique based on the highly sensitive detection of surface-confined fluorescence in the evanescent field of the waveguide allowed us to investigate the interactions of the immobilized protein with cations and ligands. For specific binding studies, a FITC-Na,K-ATPase was used, which had been labelled covalently within the ATP-binding domain of the protein. Fluorophore labels of the surface-bound enzyme can be selectively excited in the evanescent field. A preserved functional activity of the immobilized enzyme was only found when a phospholipid monolayer was preassembled onto the hydrophobic chip surface to form a gentle, biocompatible interface. In situ atomic force microscopy (AFM) was used to examine and optimize the conditions for the lipid and membrane fragment assembly and the quality of the formed layers. The enzyme's functional activity was tested by selective K+ cation binding, interaction with anti-fluorescein antibody 4-4-20, phosphorylation of the protein and binding of inhibitory ligand ouabain. The comparison with corresponding fluorescence intensity changes found in bulk solution provides information about the side-directed surface binding of the Na,K-ATPase membrane fragments. The affinity constants of K+ ions to the Na,K-ATPase was the same for the immobilized and the non-immobilized enzyme, providing evidence for the highly native environment on the surface. The method for the functional immobilization of membrane fragments on waveguide surfaces will be the basis for future applications in pharmaceutical research where advanced methods for exploring the molecular mechanisms of membrane receptor targets and drug screening are required.  相似文献   

11.
The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order.  相似文献   

12.
Although incorporation of photo-activatable lipids into membranes potentially opens up novel avenues for investigating interactions with proteins, the question of whether diazirine-modified lipids are suitable for such studies, remains under debate. Focusing on the potential for studying lipid/peptide interactions by cross-linking mass spectrometry (XL-MS), we developed a diazirine-modified lipid (DiazPC), and examined its behaviour in membranes incorporating the model α-helical peptide LAVA20. We observed an unexpected backfolding of the diazirine-containing stearoyl chain of the lipid. This surprising behaviour challenges the potential application of DiazPC for future XL-MS studies of peptide and protein/lipid interactions. The observations made for DiazPC most likely represent a general phenomenon for any type of membrane lipids with a polar moiety incorporated into the alkyl chain. Our finding is therefore of importance for future protein/lipid interaction studies relying on modified lipid probes.  相似文献   

13.
Liposomes are versatile three-dimensional, biomaterial-based frameworks that can spatially enclose a variety of organic and inorganic biomaterials for advanced targeted-delivery applications. Implementation of external-stimuli-controlled release of their cargo will significantly augment their wide application for liposomal drug delivery. This paper presents the synthesis of a carbohydrate-derived lipid, capable of changing its conformation depending on the presence of Zn2+: an active state in the presence of Zn2+ ions and back to an inactive state in the absence of Zn2+ or when exposed to Na2EDTA, a metal chelator with high affinity for Zn2+ ions. This is the first report of a lipid triggered by the presence of a metal chelator. Total internal reflection fluorescence microscopy and a single-liposome study showed that it indeed was possible for the lipid to be incorporated into the bilayer of stable liposomes that remained leakage-free for the fluorescent cargo of the liposomes. On addition of EDTA to the liposomes, their fluorescent cargo could be released as a result of the membrane-incorporated lipids undergoing a conformational change.  相似文献   

14.
Nanoparticles taken into biological systems can have biological impacts through their interactions with cell membranes, accompanied by protein adsorption onto the nanoparticle surfaces, forming a so-called protein corona. Our current research aims to demonstrate that nanoscale protein aggregates behave like such nanoparticles with regard to the interaction with lipid membranes. In this study, the adsorption and disruption of the lipid membranes by protein aggregates were investigated using amyloid fibrils and nanoscale thermal aggregates of lysozyme. Both types of protein aggregates had disruptive effects on the negatively charged liposomes, similar to polycationic nanoparticles. Interestingly, adsorption of liposomes on the amyloid fibrils preceding disruption occurred even if the net charge of the liposome was zero, suggesting the importance of hydrophobic interactions in addition to electrostatic interactions. The results of the present study provide new insights into the biological impacts of nanoparticles in vivo.  相似文献   

15.
Protein lateral mobility in surface-supported bilayers is often much lower than the mobility of the lipids. In the present study we explore whether the incorporation of a PEG cushion between the bilayer and the substrate increases the lateral mobility of transmembrane proteins in bilayers produced via directed assembly, a method based on Langmuir-Blodgett deposition techniques. In our experiments, the PEG cushions were incorporated by adding PEG lipids to the protein/lipid monolayer at the air/water interface, at the first step of bilayer assembly. The protein and lipid mobilities in 160 different bilayers, with various PEG molecular weights and PEG lipid concentrations, were measured and compared. We found that the measured diffusion coefficients do not depend on the PEG molecular weight or the PEG lipid concentration and are very similar to the values measured in the absence of PEG. Therefore, contrary to our expectations, we found that a PEG cushion does not necessarily increase protein mobility, suggesting that the low protein mobility is not a consequence of protein-substrate interactions. Furthermore, we showed that the low protein mobility is not due to protein aggregation. The major determinant of protein mobility in surface-supported bilayer systems appears to be the method of bilayer assembly. While proteins were always mobile if the bilayers were prepared using the directed assembly method, in the presence and absence of a PEG cushion, other bilayer assembly protocols resulted in complete lack of protein mobility.  相似文献   

16.
夏云生曹春  朱昌青 《中国化学》2007,25(12):1836-1841
Three different size CdTe quantum dots (QDs) capped by 3-mercaptopropionic acid (MPA) have been prepared in aqueous solutions, and their interactions with Cu^2+ and Hg^2+ have been investigated. The opposite size-dependent fluorescence quenching of CdTe QDs by Hg^2+ and Cu^2+ was observed: Hg^2+ quenched smaller particles more efficiently than larger ones while larger particles were more markedly quenched by Cu^2+. Based on the different size responses, Hg^2+ and Cu^2+ were respectively detected with high sensitivity and selectivity, for the first time, using the QDs with different sizes but the same components and capping ligands.  相似文献   

17.
Supported lipid bilayers containing phosphatidylcholine headgroups are observed to undergo reorganization from a 2D fluid, lipid bilayer assembly into an array of complex 3D structures upon exposure to extreme pH environments. These conditions induce a combination of molecular packing and electrostatic interactions that can create dynamic morphologies of highly curved lipid membrane structures. This work demonstrates that fluid, single-component lipid bilayer assemblies can create complex morphologies, a phenomenon typically only associated with lipid bilayers of mixed composition.  相似文献   

18.
Membrane proteins, although constituting about one-third of all proteins encoded by the genomes of living organisms, are still strongly underrepresented in the database of 3D protein structures, which reflects the big challenge presented by this class of proteins. Structural biologists, by employing electron and x-ray approaches, are continuously revealing new and fundamental insights into the structure, function, assembly and interaction with lipids of membrane proteins. To date, two structural motifs, alpha-helices and beta-sheets, have been found in membrane proteins and interestingly these two structural motives correlate with the location: while alpha-helical bundles are most often found in the receptors and ion channels of plasma and endoplasmic reticulum membranes, beta-barrels are restricted to the outer membrane of Gram-negative bacteria and in the mitochondrial membrane, and represent the structural motif used by several microbial toxins to form cytotoxic transmembrane channels. The beta-barrel, while being a rigid and stable motif is a versatile scaffold, having a wide variation in the size of the barrel, in the mechanism to open or close the gate and to impose selectivity on substrates. Even if the number of x-ray structures of integral membrane proteins has greatly increased in recent years, only a few of them provide information at a molecular level on how proteins interact with lipids that surround them in the membrane. The detailed mechanism of protein lipid interactions is of fundamental importance for understanding membrane protein folding, membrane adsorption, insertion and function in lipid bilayers. Both specific and unspecific interactions with lipids may participate in protein folding and assembly.  相似文献   

19.
《Supramolecular Science》1998,5(5-6):803-808
The adsorption of 80S ribosome from rat liver to the surface of lipid monolayers at the air/water interface was examined by electron microscopy (EM) using a negative staining method. The results showed that, a large number of 80S ribosomes can be adsorbed to the lipid monolayers containing positively charged octadecylamine (SA), whereas the adsorption of ribosomes to the surface of neutral or negatively charged lipid monolayers was negligible. There existed a proper ratio of SA to complemented neutral lipids which facilitated the maximum binding of ribosomes. Increasing the subphase pH value will enhance the adsorption of ribosome, but when raising the subphase concentrations of K+, Mg2+ and glycerol, the adsorption of ribosomes can be weakened, suggesting that the driving forces of the adsorption mainly come from the electrostatic interactions between the ribosome and the lipids. The important characteristics of such interactions between the 80S rat liver ribosomes and the lipid membranes, as revealed by this new technology, which may help in the further understanding of the protein biosynthesis is discussed.  相似文献   

20.
Laser microelectrophoresis, dynamic light scattering, and fluorescence and UV spectroscopy are employed to study poly-N-ethyl-4-vinylpyridinium bromide adsorption on the surface of bilayer lipid vesicles (liposomes) formed from mixtures of anionic phosphatidyl serine and electroneutral phosphatidylcholine. It is established that polycation adsorption is accompanied by the neutralization of charges on liposomes and their aggregation. The subsequent addition of a low-molecular-weight salt (NaCl) solution to suspensions of complexes causes them to dissociate into their initial components, while the stability of the complexes with respect to the salt action increases with the fraction of the anionic lipid in the liposome membranes. The data obtained are interpreted from the position of the formation-disintegration of a molecular capacitor, the charge of which is generated by spatially separated anionic lipids located in the bilayer membrane and cationic units of the adsorbed polyamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号