首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Alternative Ligands. XXXVI. Novel Rhodium(I) Complexes with Donor/Acceptor Chelating Ligands In order to generate metal base/Lewis‐acid interactions in rhodium(I) phosphane complexes the binuclear complex [Rh(CO)2Cl]2 was reacted in benzene with dipod ligands of the type R2M′(OCH2PMe2)x(CH2CH2PMe2)2–x (R = F, Me; M′ = Si, Ge; x = 0–2) using the Ziegler dilution principle with the aim to produce mononuclear compounds in which with formation of five‐membered chelate rings in principle Rh → M′ contacts are possible. The reactions of ligands 1 – 7 (Table 1) with [Rh(CO)2Cl]2 proceed under CO elimination and, in spite of large turnovers, lead to a variety of products 8 – 14 (Table 1), in case of 11 , 13 and 14 accompanied by degradation of the corresponding ligands. Intact ligands are present in the 16‐membered rings of the binuclear complexes 8 – 10 and 12 , for which, due to the molecular structure, Rh → M′ interactions can be excluded. In the reaction of Me2Si(OCH2PMe2)2 ( 4 ) with [Rh(CO)2Cl]2 the unusual binuclear system 11 with a central Rh2O2 four‐membered ring and two RhO(SiMe2OCH2PMe2) six‐membered rings is formed. Small amounts of the mononuclear compounds Rh(CO)Cl(Me2PCH2OH)2 ( 13 ) and Rh(CO)Cl3(Me2PCH2OH)2 ( 14 ), respectively, are obtained in crystalline form from the reaction mixtures of [Rh(CO)2Cl]2 with Me2Ge(OCH2PMe2)(CH2CH2PMe2) ( 6 ) or Me2Ge(OCH2PMe2)2 ( 7 ). The new complexes were characterized by analytic (C, H), spectroscopic (NMR, IR, MS) and, except for 12 , by single crystal structural analyses.  相似文献   

2.
Alternative Ligands. XXIV. Rhodium(I) Complexes with P-Donor and Sn- or B-Acceptor Ligands Donor/acceptor ligands of the type Me2PCH2CH2SnMe3 (1) , (Me2PCH2CH2)2SnMe2 (2) , and Me2PCMe=CMeBMe2 (3) , respectively, have been prepared by hydrostannlation of Me2PVi with Me3SnH or Me2SnH2 and by a multistep synthesis via Na[Me3BH], Na[Me3BC?;CMe] using Me2PCI as partner, respectively. The new ligands were used to produce the Rh(I) complexes RhCI(CO)(Me2PCH2CH2SnMe3)2 (5) , RhCI(CO)(Me2PCH2CH2)2SnMe2 (7), and RhCI(CO)(Me2PCMe=CMeBMe2)2 (8) by reactions of Rh(CO)2CH2 (4) with the corresponding ligands. In addition, the VASKA type compounds RhCI(CO)(Me2PVi)2 (6) and RhCI(CO)(PMe3)2 were prepared in order to test an alternative route to 5 or to from the known adduct RhCI(CO)(PMe3)2. BBr3 (9) . RhBr(CO)(PMe3)2 (10) and the binuclear system [RhBr(CO)PMe3]2 (11) were identified spectroscopically after working up the 1:1 reaction mixture of RhCI(CO)(PMe3)2 and BBr3. Reasonable pathways are suggested for their formation. ?Metallbase”?/acceptor interaction show up, on the one hand, in following reactions in case of the ligands with Sn acceptors, on the other hand, in significant changes of spectroscopic data for 8 . New compounds of sufficient stability were characterized by analytical (C, H) and spectroscopic (MS, IR. NMR) investigations.  相似文献   

3.
Alternative Ligands. XXX Novel Tripod Ligands XM' (OCH2PMe2)n(CH2CH2PMe2)3?n (M' = Si, Ge; n = 0–3) for Cage Structures Attempts to prepare new tripod ligands XSi(OCH2PMe2)3 [X = CF3 ( 15 ), C6F5 ( 16 ), NMe2 ( 17 ), Cl ( 18 ), F ( 19 ), H ( 20 ), OEt ( 21 ), OMe ( 22 )] prove to be unsuccessful in spite of using different pathways, because the groups X undergo following reactions giving insoluble solids (polyadducts) or form inseparable mixtures, e. g. (RO)nSi(OCH2PMe2)4?n (R = Me, Et). In many cases Si(OCH2PMe2)4 ( 13 ) can be isolated from the reaction mixture. The syntheses of the ligands XSi(CH2CH2PMe2)3 [X = NMe2 ( 6 ), Cl ( 7 ), F ( 8 ), OMe ( 9 ), Vi ( 12 )], Si(OCH2PMe2)4 ( 13 ) und Me3GeOCH2PMe2 ( 14 ) are successful. The compounds MeSi(OCH2PMe2)2CH2CH2NMe2 ( 10 ) and MeSi(OCH2PMe2)2CH2CH2P(CF3)2 ( 11 ) with different donor groups are obtained in good yields. The preparative program includes the synthesis of the known representatives MeSi(OCH2PMe3)3 ( 1 ), MeSi(OCH2PMe2)2CH2CH2PMe2 ( 2 ), MeSi(OCH2PMe2)(CH2CH2PMe2)2 ( 3 ), MeSi(CH2CH2PMe2)3 ( 4 ) and MeGe(OCH2PMe2)3 ( 5 ). Important preparative steps are the substitution of M'Cl (M' = Si, Ge) by Me2PCH2O groups and the photochemically induced or base catalyzed addition of HNMe2, HPMe2 or HP(CF3)2 to SiVi functions. The novel compounds are characterized by analytical and spectroscopic (IR, NMR, MS) investigations.  相似文献   

4.
Alternative Ligands. XXII. Rhodium(I) complexes with Donor/Acceptor Ligands of the Typs Me2PCH2CH2SiXnMe3?n(X = F, Cl, OMe) Donor/acceptor ligand of the type Me2PCH2SiXnMe3?n react with [Rh(CO)2Cl]2 ( 1 ) to give the mononuclear complexes RhCl(CO)(PMe2CH2CH2SiXnMe3?n)2 ( 2-6 , Table 1) with planar geometry of the donor atoms, one exception being Me2PCH2CH2CH2SiCl3, yielding the crystalline RhIII-complex RhCl2(CO)(PMe2CH2CH2SiCl2)(PMe2CH2CH2SiCl3) ( 7 ) by oxidative addition of one of the SiCl bonds to the Rh1 precursor. Structures with Rh → Si interaction between the basic central atoms and the acceptor group SiXnMe3?n could be detected in the isolated products neither spectroscopically nor by X-ray diffraction of the two representatives RhCl(CO)(PMe2CH2CH2SiF3)2 ( 2 ) and RhCl(CO)[PMe2CH2CH2siF3]2 ( 2 ) and RhCl(CO) [PMe2CH2CH2Si(OMe3]2 ( 6 ). The presence of such acid/base adducts in the reaction mixture is indicated for the more acidic acceptor groups SiXnMe3?n byvco values near 1990cm?1, (see Table 3). The complex RhCl(CO)PMe3)(PMe2CH2CH2SiF3 ( 8 ) is obtained by the reaction of RhCl(CO)(PMe3)2 ( 9 ) with Me2PCH2SiF3 and has been identified spectroscopically in a mixture with 2 and 9 .  相似文献   

5.
A high‐yielding synthetic route for the preparation of group 9 metallaboratrane complexes [Cp*MBH(L)2], 1 and 2 ( 1 , M=Rh, 2 , M=Ir; L=C7H4NS2) has been developed using [{Cp*MCl2}2] as precursor. This method also permitted the synthesis of an Rh–N,S‐heterocyclic carbene complex, [(Cp*Rh)(L2)(1‐benzothiazol‐2‐ylidene)] ( 3 ; L=C7H4NS2) in good yield. The reaction of compound 3 with neutral borane reagents led to the isolation of a novel borataallyl complex [Cp*Rh(L)2B{CH2C(CO2Me)}] ( 4 ; L=C7H4NS2). Compound 4 features a rare η3‐interaction between rhodium and the B‐C‐C unit of a vinylborane moiety. Furthermore, with the objective of generating metallaboratranes of other early and late transition metals through a transmetallation approach, reactions of rhoda‐ and irida‐boratrane complexes with metal carbonyl compounds were carried out. Although the objective of isolating such complexes was not achieved, several interesting mixed‐metal complexes [{Cp*Rh}{Re(CO)3}(C7H4NS2)3] ( 5 ), [Cp*Rh{Fe2(CO)6}(μ‐CO)S] ( 6 ), and [Cp*RhBH(L)2W(CO)5] ( 7 ; L=C7H4NS2) have been isolated. All of the new compounds have been characterized in solution by mass spectrometry, IR spectroscopy, and 1H, 11B, and 13C NMR spectroscopies, and the structural types of 4 – 7 have been unequivocally established by crystallographic analysis.  相似文献   

6.
Co(CH3)(PMe3)4 forms 100 % regioselectively with (2‐(2‐diphenylphosphanyl)phenyl)‐1,3‐dioxalane and 2‐diphenylphosphanyl‐pyridine, by elimination of methane, the four‐membered metallacycles Co{(C3O2HC6H3)P(C6H5)2}(PMe3)3 ( 1 ) and Co{(CNC4H3)P(C6H5)2}(PMe3)3 ( 4 ). The regioselectivity is independent of the steric requirement of the ortho substituent in the 2‐diphenylphosphanylaryl‐ligands. Oxidative addition with iodomethane transforms 1 and 4 into octahedral, diamagnetic low‐spin d6 complexes Co(CH3)I‐{(C3O2HC6H3)P(C6H5)2}(PMe3)2 ( 2 ) and Co(CH3)I‐{(CNC4H3)P(C6H5)2}(PMe3)2 ( 5 ). Under an atmosphere of carbon monoxide, insertion into the Co‐C bond results in ring expansion by forming the new assembled phosphanylbenzoyl complexes Co{(C4O3HC6H3)‐P(C6H5)2}CO(PMe3)2 ( 3 ) and Co{(OCNC4H3)P(C6H5)2}CO(PMe3)2 ( 6 ). The three different types of cobaltacycles are supported by X‐ray diffraction of 1 , 3 , 5 and 6 .  相似文献   

7.
Herein, we report the syntheses of silicon‐ and tin‐containing open‐chain and eight‐membered‐ring compounds Me2Si(CH2SnMe2X)2 ( 2 , X=Me; 3 , X=Cl; 4 , X=F), CH2(SnMe2CH2I)2 ( 7 ), CH2(SnMe2CH2Cl)2 ( 8 ), cyclo‐Me2Sn(CH2SnMe2CH2)2SiMe2 ( 6 ), cyclo‐(Me2SnCH2)4 ( 9 ), cyclo‐Me(2?n)XnSn(CH2SiMe2CH2)2SnXnMe(2?n) ( 5 , n=0; 10 , n = 1, X= Cl; 11 , n=1, X= F; 12 , n=2, X= Cl), and the chloride and fluoride complexes NEt4[cyclo‐ Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?F] ( 13 ), PPh4[cyclo‐Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?Cl] ( 14 ), NEt4[cyclo‐Me(F)Sn(CH2SiMe2CH2)2Sn(F)Me?F] ( 15 ), [NEt4]2[cyclo‐Cl2Sn(CH2SiMe2CH2)2SnCl2?2 Cl] ( 16 ), M[Me2Si(CH2Sn(Cl)Me2)2?Cl] ( 17 a , M=PPh4; 17 b , M=NEt4), NEt4[Me2Si(CH2Sn(Cl)Me2)2?F] ( 18 ), NEt4[Me2Si(CH2Sn(F)Me2)2?F] ( 19 ), and PPh4[Me2Si(CH2Sn(Cl)Me2)2?Br] ( 20 ). The compounds were characterised by electrospray mass‐spectrometric, IR and 1H, 13C, 19F, 29Si, and 119Sn NMR spectroscopic analysis, and, except for 15 and 18 , single‐crystal X‐ray diffraction studies.  相似文献   

8.
Unexpected Reduction of [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2; Cp* = C5Me5) by Reaction with DBU – Molecular Structure of [(DBU)H][Cp*TaCl4] (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2 (Mes); Cp* = C5Me5) react with DBU in an internal redox reaction with formation of [(DBU)H][Cp*TaCl4] ( 1 ) (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) and the corresponding diphosphane (P2H2R2) or decomposition products thereof. 1 was characterised spectroscopically and by crystal structure determination. In the solid state, hydrogen bonding between the (DBU)H cation and one chloro ligand of the anion is observed.  相似文献   

9.
The reactions of Cp*M(PMe3)Cl2 (M = Rh ( 1a ), Ir ( 1b )) with (NEt4)2[WS4] led to the heterodimetallic sulfido‐bridged complexes Cp*M(PMe3)[(μ‐S)2WS2] (M = Rh ( 2a ), Ir ( 2b )), whereas the dimers [Cp*MCl(μ‐Cl)]2 (M = Rh ( 4a ), Ir ( 4b )) reacted with (NEt4)2[WS4) to give the known trinuclear compounds [Cp*M(Cl)]2(μ‐WS4) (M = Rh ( 5a ), Ir ( 5b )). Hydrolysis of the terminal W=S bonds converts 2a, b into Cp*M(PMe3)[(μ‐S)2WO2] (M = Rh ( 3a ), Ir ( 3b )). Salts of a heterodimetallic anion, A[CpMo(I)(NO)(WS4)] ( 6 ) (A+ = NEt4+, NPh4+) were obtained by reactions of [CpMo(NO)I2]2 with tetrathiotungstates, A2[WS4]. The complexes were characterized by IR and NMR (1H, 13C, 31P) spectroscopy, and the X‐ray crystallographic structure of Cp*Rh(PMe3)[(μ‐S)2WS2] ( 2a ) has been determined. The bond lengths and angles in the coordinations spheres of Rh and W in 2a (Rh···W 288.5(1) pm) are compared with related complexes containing terminal [WS42—] chelate ligands.  相似文献   

10.
[CpR(OC)Mo(μ‐η2:2‐P2)2FeCpR′] as Educt for Heterobimetallic Dinuclear Clusters with P2 and CnRnP4‐n Ligands (n = 1, 2) The cothermolysis of [CpR(OC)Mo(μ‐η2:2‐P2)2FeCpR′] ( 1 ) and tBuC≡P ( 2 ) as well as PhC≡CPh ( 3 ) affords the heterobimetallic triple‐decker like dinuclear clusters [(Cp'''Mo)(Cp*′Fe)(P3CtBu)(P2)] ( 4 ), Cp''' = C5H2tBu3‐1,2,4, Cp*′ = C5Me4Et, and [(Cp*Mo)(Cp*Fe)(P2C2Ph2)(P2)] ( 5 ) with a bridging tri‐ and diphosphabutadiendiyl ligand. 4 and 5 have been characterized additionally by X‐ray crystallography.  相似文献   

11.
Alternative Ligands. XXXI. Nickelcarbonyl Complexes of Tripod Ligands of the Type XM′(OCH2PMe2)n(CH2CH2PR2)3–n (M′ = Si, Ge; n = 0–3) The coordinating properties of the tripod ligands RM′(OCH2PMe2)n(CH2CH2PMe2)3–n (M′ = Si, Ge) ( 1–7 ), MeSi(OCH2PMe2)2CH2CH2P(CF3)2 ( 8 ), MeSi(OCH2PMe2)2CH2CH2NMe2( 10 ) as well as of the tetradentate representative Si(OCH2PMe2)4 ( 9 ) have been investigated by the preparation of the novel nickel carbonyl complexes LNiCO ( 11–18 ), Si(OCH2PMe2)4[Ni(CO)2]2 ( 19 ) and (HOCH2PMe2)2Ni(CO)2 ( 20 ). They are obtained in moderate to good yields by the reaction of Ni(CO)4 with the corresponding ligands in toluene (20–111°C) (see Table 1). The new compounds have been characterized by analytical (C, H) and spectroscopic investigations (IR; 1H-, 13C-, 19F, 31P-NMR, MS). The ligand properties are discussed on the basis of spectroscopic data [in particular coordination shifts Δδ = δ(complex)—δ(ligand)] leading to the conclusion that the high electron density on Ni gives rise to a weak, but significant Ni→Si interaction. An important indication comes from the large low field shift ΔδF = 34.5 ppm for the SiF acceptor bridge in 17 . This result is supported by an X-ray diffraction study of 11 giving an NiSi distance of 3.941(2) Å. With the exception of O2…?P3 (Abb. 7) all other O…?P through-cage contacts are longer than the NiSi distance. An additional release from the high charge density on Ni is obtained via π-backbonding to the neighbouring groups OCPMe2, CCPMe2 and CO.  相似文献   

12.
Chalcogen Derivatives of the Halfsandwich Tungsten(V) Complexes Cp*WCl4 and Cp*WCl4(PMe3). X‐Ray Crystal Structure Analyses of anti ‐[Cp*W(Se)(μ‐Se)]2 and Cp*W(S)2(OMe) The chalcogenation of Cp*WCl4 ( 1 ) by E(SiMe3)2 (E = S, Se) and Te(SiMe2tBu)2 in chloroform solution leads to dimeric products of the type anti‐[Cp*W(E)(μ‐E)]2 (E = S ( 3 a ), Se ( 3 b ) and Te ( 3 c )). An X‐ray structure determination of 3 b indicates a centrosymmetric molecule containing a planar W(μ‐Se)2W ring, the W–W distance (297.9(1) pm) corresponds to a single bond. In the presence of air the two terminal chalcogenido ligands (E) in 3 a – c are stepwise replaced by oxido ligands (O) to give [Cp*W(O)(μ‐E)]2 (E = S ( 5 a ), Se ( 5 b ) and Te ( 5 c )) in quantitative yields. The reaction of Cp*WCl4 with H2S or ammonium polysulfide, (NH4)2Sx (x ∼ 10), leads to Cp*W(S)2Cl ( 6 a ); the corresponding methoxy derivative, Cp*W(S)2OCH3 ( 9 a ), has been characterized by an X‐ray structure analysis. On the other hand, the reaction of Cp*WCl4(PMe3) ( 2 ) with sodium tetrasulfide, Na2S4, in dimethylformamide solution gives a mixture of mononuclear Cp*W(S)(S2)Cl ( 8 a ), dinuclear [Cp*W(S)(μ‐S)]2 ( 3 a ) and a trinuclear side‐product of composition Cp*2W3S7 ( 13 a ). Terminal sulfido ligands are replaced by terminal oxido ligands in solution in the presence of oxygen. Thus, 6 a is stepwise converted into Cp*W(O)(S)Cl ( 10 a ) and CpW(O)2Cl ( 12 a ), whereas 8 a gives Cp*W(O)(S2)Cl ( 11 a ) and 13 a leads to Cp*2W3(O)S6 ( 14 a ). The disulfido complexes 8 a and 11 a are desulfurized by triphenylphosphane to give 6 a and 10 a . The new complexes have been characterized by their IR and NMR spectra and by mass spectrometry.  相似文献   

13.
Co-ordinative Properties of Chelating Ligands of the Type Me2XSi(Me2)CH2XMe2 (X ? N and/or P; Me ? CH3) The reactions of the ligands L ? Me2XSi(Me2)CH2XMe2 (X ? N and/or P; Me ? CH3) with M(CO)6 and M(CO)4norbor (norbor ? norbornadiene) (M ? Cr, Mo), respectively, yield derivatives of the types M(CO)5L, M(CO)4L, and M(CO)4L2, respectively. M(CO)5L compounds are formed from the hexacarbonyls with Me2NSiMe2CH2PMe2, whereas the ligand Me2NSiMe2CH2NMe2 does not afford analogous derivatives under the same conditions. Even on substitution of the diene-ligand in M(CO)4norbor by Me2NSiMe2CH2PMe2 the chelate complexes M(CO)4NMe2SiMe2CH2PMe2 are not obtained, but the cis-disubstituted products M(CO)4[PMe2CH2SiMe2NMe2]2 with phosphorus acting as donor atom are produced. The ligands Me2PSiMe2CH2XMe2(X ? N, P) give the chelate complexes M(CO)4PMe2SiMe2CH2XMe2 in high yields. The new compounds were identified by analytical and spectroscopic (PMR, IR, mass spectra) methods.  相似文献   

14.
Double chloride abstraction of Cp*AsCl2 gives the dicationic arsenic species [(η5‐Cp*)As(tol)][B(C6F5)4]2 ( 2 ) (tol=toluene). This species is shown to exhibit Lewis super acidity by the Gutmann–Beckett test and by fluoride abstraction from [NBu4][SbF6]. Species 2 participates in the FLP activation of THF affording [(η2‐Cp*)AsO(CH2)4(THF)][B(C6F5)4]2 ( 5 ). The reaction of 2 with PMe3 or dppe generates [(Me3P)2As][B(C6F5)4] ( 6 ) and [(σ‐Cp*)PMe3][B(C6F5)4] ( 7 ), or [(dppe)As][B(C6F5)4] ( 8 ) and [(dppe)(σ‐Cp*)2][B(C6F5)4]2 ( 9 ), respectively, through a facile cleavage of C?As bonds, thus showcasing unusual reactivity of this unique As‐containing compound.  相似文献   

15.
A new family of Y4/M2 and Y5/M heterobimetallic rare‐earth‐metal/d‐block‐transition‐metal? polyhydride complexes has been synthesized. The reactions of the tetranuclear yttrium? octahydride complex [{Cp′′Y(μ‐H)2}4(thf)4] (Cp′′=C5Me4H, 1‐C5Me4H ) with one equivalent of Group‐6‐metal? pentahydride complexes [Cp*M(PMe3)H5] (M=Mo, W; Cp*=C5Me5) afforded pentanuclear heterobimetallic Y4/M? polyhydride complexes [{(Cp′′Y)4(μ‐H)7}(μ‐H)4MCp*(PMe3)] (M=Mo ( 2 a ), W ( 2 b )). UV irradiation of compounds 2 a , b in THF gave PMe3‐free complexes [{(Cp′′Y)4(μ‐H)6(thf)2}(μ‐H)5MCp*] (M=Mo ( 3 a ), W ( 3 b )). Compounds 3 a , b reacted with one equivalent of [Cp*M(PMe3)H5] to afford hexanuclear Y4/M2 complexes [{Cp*M(μ‐H)5}{(Cp′′Y)4(μ‐H)5}{(μ‐H)4MCp*(PMe3)}] (M=Mo ( 4 a ), W ( 4 b )). UV irradiation of compounds 4 a , b provided the PMe3‐free complexes [(Cp′′Y)4(μ‐H)4{(μ‐H)5MCp*}2] (M=Mo ( 5 a ), W ( 5 b )). C5Me4Et‐ligated analogue [(Cp′′Y)4(μ‐H)4{(μ‐H)5Mo(C5Me4Et)}2] ( 5 a′ ) was obtained from the reaction of 1‐C5Me4H with [(C5Me4Et)Mo(PMe3)H5]. On the other hand, the reaction of pentanuclear yttrium? decahydride complex [{(C5Me4R)Y(μ‐H)2}5(thf)2] ( 1‐C5Me5 : R=Me; 1‐C5Me4Et : R=Et) with [Cp*M(PMe3)H5] gave the hexanuclear heterobimetallic Y5/M? polyhydride complexes [({(C5Me4R)Y}5(μ‐H)8)(μ‐H)5MCp*] ( 6 a : M=Mo, R=Me; 6 a′ : M=Mo, R=Et; 6 b : M=W, R=Me). Compound 5 a released two molecules of H2 under vacuum to give [(Cp′′Y)4(μ‐H)2{(μ‐H)4MoCp*}2] ( 7 ). In contrast, compound 6 a lost one molecule of H2 under vacuum to yield [{(Cp*Y)5(μ‐H)7}(μ‐H)4MoCp*] ( 8 ). Both compounds 7 and 8 readily reacted with H2 to regenerate compounds 5 a and 6 a , respectively. The structures of compounds 4 a , 5 a′ , 6 a′ , 7 , and 8 were determined by single‐crystal X‐ray diffraction.  相似文献   

16.
Reactions of Cp*NbCl4 and Cp*TaCl4 with Trimethylsilyl‐azide, Me3Si‐N3. Molecular Structures of the Bis(azido)‐Oxo‐Bridged Complexes [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) and [Cp*TaCl2(μ‐N3)]2(μ‐O) (Cp* = Pentamethylcyclopentadienyl) The chloro ligands in Cp*TaCl4 (1c) can be stepwise substituted for azido ligands by reactions with trimethylsilyl azide, Me3Si‐N3 (A) , to generate the complete series of the bis(azido)‐bridged dimers [Cp*TaCl3‐n(N3)n(μ‐N3)]2 ( n = 0 (2c) , n = 1 (3c) , n = 2 (4c) and n = 3 (5c) ). If the solvent CH2Cl2 contains traces of water, an additional oxo bridge is incorporated to give [Cp*‐TaCl2(μ‐N3)]2(μ‐O) (6c) or [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) (7c) , respectively. Both 6c and 7c are also formed in stoichiometric reactions from [Cp*TaCl2(μ‐OH)]2(μ‐O) (8c) and A . Analogous reactions of Cp*NbCl4 (1b) with A were used to prepare the azide‐rich dinuclear products [Cp*NbCl3‐n(N3)n(μ‐N3)]2 (n = 2 (4b) , and n = 3 (5b) ), and [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) (7b) . The mononuclear complex Cp*Ta(N3)Me3 (10c) is obtained from Cp*Ta(Cl)Me3 and A . All azido complexes were characterised by their IR as well as their 1H and 13C NMR spectra; X‐ray crystal structure analyses are available for 6c and 7b .  相似文献   

17.
Li2[(C5Me4)2CH2] (III), the dilithium salt of the novel permethylated ring-connected [(C5Me4)2CH2]2− dianion, has been prepared from C5Me4H2 (I) via (C5Me4H)2CH2 (II) and subsequent reaction with n-BuLi. III reacts with [Rh(C2H4)(PMe3)Cl]2 to give the dinuclear complex [(C5Me4)2CH2][Rh(C2H4)PMe3]2 (IV) from which on methylation the compounds {[(C5Me4)2CH2][RhCH3(C2H4)PMe3]2} (PF6)2 (V) and [(C5Me4)2CH2][RhCH3(PMe3)I]2 (VI) are obtained. Treatment of IV with excess trifluoroacetic acid leads to the formation of [(C5Me4)2CH2](Rh(PMe3)(OCOCF3)2]2 (VII) which reacts with chelating diphosphines in the presence of NH4PF6 to give the PF6 salts of the doubly-bridged dications {[(C5Me4)2CH2][Rh2(PMe3)2(OCOCF3)2(μ-P-P)]}2+ (PP = dppm, dppe, dppb) (IX–XI). The reaction of III with [Rh(CO)2Cl]2 produces a mixture of the dinuclear complexes [(C5Me4)2CH2][Rh(CO)2]2 (XII) and [(C5Me4)2CH2][Rh2(μ-CO)2] (XIII) which are easily interconverted under mild conditions.  相似文献   

18.
Ligand Behaviour of P‐functional Organotin Halides: Nickel(II), Palladium(II), and Platinum(II) Complexes with Me2(Cl)SnCH2CH2PPh2 Me2(Cl)SnCH2CH2PPh2 ( 1 ) reacts with NiII, PdII, and PtII halides in molar ratio 2 : 1 forming the complexes [MX2{PPh2CH2CH2Sn(Cl)Me2}2] (M = Ni, Pd, Pt; X = Cl, Br) ( 3 – 6 , 9 , 10 ) ( 7 , 8 : M = Ni; Br instead of Cl). The nickel complexes were isolated and characterized both as the planar ( 3 , 5 , 7 ) and the tetrahedral ( 4 , 6 , 8 ) isomer. Crystal structure analyses and NMR data indicate for the planar nickel complexes 3 , 5 , 7 and [MCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 : M = Pd; 10 : M = Pt) the existence of intra and intermolecular M–Hal…Sn bridges. In a ligand : metal molar ratio of 3 : 1 the complexes [MéCl{PPh2CH2CH2SnCl2Me2}{PPh2CH2CH2Sn(Cl)Me2}2] ( 11 : M = Pd; 12 : M = Pt) are formed which represent intramolecular ion pairs. By dehalogenation of [PdCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 ) with sodium amalgam and graphite potassium (C8K), respectively, the palladacycles cis‐[Pd{PPh2CH2CH2SnMe2}2] ( 13 ) and trans‐[Pd(Cl)PPh2CH2CH2SnMe2{PPh2CH2CH2Sn(Cl)Me2}] ( 14 ) are formed. From the compounds 1 , 3 , 9 , 11 , and 12 the crystal structures are determined. All compounds are characterized by 1H, 31P, and 119Sn NMR spectroscopy.  相似文献   

19.
The β-trimethylphosphonio(α-trimethylsiloxy)vinylchromium complex Cp(CO)(NO)CrC(OSiMe3)=CHPMe3 (2) can be isolated from a concentrated solution of Cp(CO)2(NO)Cr (1) and Me3P=CHSiMe3 in benzene. 2 is obtained in better yield via O-silylation of the tetramethylphosphonium chromium acylate Me4P[Cp(CO)(NO)CrC(O)CH=PMe3] (3) with Me3SiOSO2CF3. 2 decomposes readily by treatment with benzene to 1 and Me3P=CHSiMe3, which forms the ylide complex Cp(CO)(NO)CrCH(SiMe3)PMe3 (4) on photolysis. Degradation of 2 can be accelerated extraordinarily by traces of Me3P=CH2. With Me3P= CH2 (2 mol) controlled conversion of 2 to 3 and Me3P=CHSiMe3 occurs. MeX (X = I, SO3F) cleaves 2 to 1 and the phosphonium salt [Me3PCH(SiMe3)]X (5a,5b).  相似文献   

20.
Bis(cyclopentadienyl)methane-bridged Dinuclear Complexes. VIII. Dinuclear Cobalt Complexes with the Dianion of Bis(cyclopentadienyl)methane and Bis(tetramethylcyclopentadienyl)dimethylsilane as Bridging Ligands The dinuclear cobalt complex [CH2(C5H4)2][Co(CO)2]2 ( 4 ) which is obtained from [Co(CO)4I] ( 2 ) and Li2[CH2(C5H4)2] ( 3 ) in 75% yield reacts with PMe3, PiPr3, P2Me4, Me2PCH2CH2PMe2 and (EtO)2POP(OEt)2, to the compounds 5–9 substituting one CO ligand per cobalt atom. Oxidative addition of CH3I to [CH2(C5H4)2][Co(CO)(PMe3)]2 ( 5 ) leads to the formation of the dinuclear cobalt(III) complex [CH2(C5H4)2][Co(COCH3)(PMe3)I]2 ( 11 ). The reaction of 4 with iodide generates [CH2(C5H4)2][Co(CO)I2]2 ( 12 ) which with PMe3, P(OMe)3, P(OiPr)3, and CNMe reacts under CO substitution to [CH2(C5H4)2][Co(L)I2]2 ( 13–16 ) and with PMe2H to {[CH2(C5H4)2][Co(PMe2H)3]2}I4 ( 17 ). The electrophilic addition reactions of NH4PF6 and CH3I to [CH2(C5H4)2][Co(PMe3)2]2 ( 20 ) produce the complex salts {[CH2(C5H4)2][CoR(PMe3)2]2}X2 ( 21 : R = H; 22 : R = CH3). From 22a (X = I) and LiCH3 the dinuclear tetramethyldicobalt compound [CH2(C5H4)2] · [Co(CH3)2(PMe3)]2 ( 23 ) is obtained which further reacts, via the intermediate 24 , to the chiral complex {[CH2(C5H4)2] · [CoCH3(PMe3)P(OMe)3]2}(PF6)2 ( 25 ). The reaction of 20 with C2(CN)4 and E- or Z-C2H2(CO2Me)2 gives the olefin(trimethylphosphine) cobalt(I) derivatives 26 und 27 . The synthesis of the dinuclear compounds 31–38 with [Me2Si(C5Me4)2]2? as the bridging unit is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号