首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relaxation of liquid‐crystalline polymer (LCP) fibers in the polycarbonate (PC)/LCP blend was examined under various conditions on a hot‐stage microscope. LC5000 is a thermotropic LCP consisting of 80/20 hydroxybenzoic acid and poly(terephthalate). The geometry of the fibers is not an important factor in the relaxation process. Fibers of different aspect ratios and lengths relaxed at the same rate and exhibited identical onset times. Increasing the temperature caused the fibers to relax faster, especially near the nematic‐transition temperature. The fibers relaxed almost immediately when subjected to a temperature of 285 °C. At 280 °C the fibers were stable for 43 min, whereas at 270 °C no noticeable relaxation was evident. Addition of compatibilizer stabilized the fibers by enhancing the interfacial adhesion between the fibers and the PC matrix. Consequently, LCP fibers in the compatibilized system relaxed at a much higher temperature (294 °C) as compared with the uncompatibilized system (275–280 °C). © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2307–2312, 2003  相似文献   

2.
Rigid, helical polyisocyanodipeptides derived from alanine (PIAAs) that form lyotropic liquid‐crystalline (LC) phases in tetrachloroethane are presented. An investigation by optical microscopy between crossed polarizers demonstrated that PIAAs prepared by the polymerization of isocyanodipeptide monomers with an activated tetrakis isocyanide nickel(II) catalyst could form cholesteric LC phases in tetrachloroethane in concentrations between 18 and 30 wt %. Cholesteric LC phases that were formed in solutions of greater than 25 wt % displayed a reversal of the cholesteric helix upon annealing at 50 °C. Diastereomeric PIAA mixtures displayed cholesteric LC behavior only when the PIAAs had the same helix screw sense. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 981–988, 2007  相似文献   

3.
We synthesized novel epoxy‐terminated monomers on the basis of imine groups with spacers of different lengths between mesogens and reactive groups and examined their mesogenic properties. Their reaction with primary aromatic diamines and tertiary amines was carried out to investigate the formation of liquid‐crystalline thermosets. We explored how the curing conditions and the structures of the monomers and amines affected the formation of ordered networks. The special symmetry of a 1,5‐disubstituted naphthalene unit in the central core led to nematic mesophases in the pure liquid‐crystalline epoxy resins, and thermosets with locked nematic textures were obtained in all cases, regardless of the length of the spacer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1536–1544, 2003  相似文献   

4.
The effect of the curing agent content on the curing behavior and liquid‐crystalline (LC) phase of the liquid‐crystalline epoxy (LCE) resin 4,4′‐di(2,3‐epoxypropyloxy)phenyl benzoate was studied. Diaminodiphenylester (DDE) was used as a curing agent. The curing behavior was observed via differential scanning calorimetry, and the LC phase was investigated with a polarized optical microscopy. The LC phase in the LCE/DDE mixture with a high DDE content was developed during curing. The onset time was inversely proportional to the DDE content. The mesophase stability of LCE/DDE was enhanced by the addition of large amounts of DDE. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 374–379, 2001  相似文献   

5.
A novel side‐chain liquid‐crystalline polyimide (SLCPI) was prepared via copolycondensation from 3,5‐diamino‐benzonic‐4′‐biphenyl ester, 4,4′‐diamino‐ biphenyl ether, and 3,3′,4,4′‐oxydiphthalic dianhydride. The energy‐minimized structure and liquid crystallinity of SLCPI were investigated by molecular modeling, differential scanning calorimetry (DSC), wide‐angle X‐ray scattering, and polarized optical microscopy, respectively. The results indicated that this polyimide (PI) with side‐chain mesogenic units exhibited a nematic NI phase. Because of the in situ self‐reinforcement of side‐chain mesogenic units, the improved tensile strength and modulus of PI films reached 270% and 300%, respectively. The coefficient of thermal expansion of films decreased by 40%. DSC and thermogravimetric analyses indicated that the phase‐transition temperature of SLCPI was above 240 °C, and the 5% weight‐loss temperature was above 520 °C. Moreover, copolycondensation of two diamines with dianhydride and incorporation of pendent mesogenic units diminished the regularity and symmetry of main chains; as a result, SLCPI exhibits good film processability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 554–559, 2003  相似文献   

6.
We examine some of the structural aspects that influence the mesomorphic behavior of liquid‐crystalline dimeric epoxy resins with imine groups in the mesogens. We synthesized two new series of monomers and compared them with previously synthesized monomers. Compared with previously studied series, the imine group in the new monomers is oriented differently with respect to the ether and ester groups linked to the end of the mesogenic unit. Our results confirmed the importance of polarization of the mesogenic groups and the presence of an ester group in the inner position in the formation of smectic mesophases. By curing with primary and tertiary amines, we demonstrate that these two requirements are necessary if liquid‐crystalline thermosets are to be obtained with different degrees of order. These studies were carried out with differential scanning calorimetry, polarized optical microscopy, and X‐ray diffraction. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1465–1477, 2003  相似文献   

7.
An Erratum has been published for this article in Journal of Polymer Science Part A: Polymer Chemistry (2003) 41(23) 3862 A new series of combined‐type, azobenzene‐based organophosphorus liquid‐crystalline polymers were synthesized, and their photoisomerization properties were studied. The prepared polymers contained azobenzene units as both the main‐chain and side‐chain mesogens. Various groups were substituted in the terminal of the side‐chain azobenzene mesogen, and the effects of the substituents were investigated. All the polymers were prepared at the ambient temperature by solution polycondensation with various 4‐substituted phenylazo‐4′‐phenyloxyhexylphosphorodichloridates and 4,4′‐bis(6‐hydroxyhexyloxy) azobenzene. The polymers were characterized with gel permeation chromatography, Fourier transform infrared, and 1H, 13C, and 31P NMR spectroscopy. Thermogravimetric analysis revealed that all the polymers had high char yields. The liquid‐crystalline behavior of the polymers was examined with hot‐stage optical polarizing microscopy, and all the polymers showed liquid‐crystalline properties. The formation of a mesophase was confirmed by differential scanning calorimetry (DSC). The DSC data suggested that mesophase stability was better for electron‐withdrawing substituents than for halogens and unsubstituted ones. Ultraviolet irradiation studies indicated that the time taken for the completion of photoisomerization depended on the dipolar moment, size, and donor–acceptor characteristics of the terminal substituents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3188–3196, 2003  相似文献   

8.
Liquid‐crystalline (LC) ionomers containing 2–15 mol % calcium ions were synthesized by the exchange reaction between the nematic LC copolymer, bearing oxycyanobiphenyl mesogenic groups, and the carboxyl groups of acrylic acid, with calcium acetate. The incorporation of 2–3 mol % Ca ions in the LC copolymer leads to some rise in the clearing point and glass‐transition temperature. A further increase in the concentration of metal ions (>5 mol %) is accompanied by induction of the smectic A phase where clearing point and glass‐transition temperatures keep constant values. Phase behavior of the LC ionomers may be understood on the basis of a structural model that considers the dual role of calcium ions in a polymer matrix. Metal ions act as points of noncovalent electrostatic binding of the polymer chains and are capable of forming larger ionic associates (multiplets). The comparison of the phase behavior of sodium and calcium containing LC ionomers shows that the formation of ionic links may lead to the growth of structure defects suppressing a positive influence of charged groups on the mesophase clearing temperature. The orientation behavior of the LC ionomers in the magnetic field was studied. It was shown that the incorporation of calcium ions (3 mol %) in the LC copolymer matrix leads to the growth of orientation order parameter S of the nematic phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3953–3959, 2001  相似文献   

9.
A series of new side‐chain cholesteric elastomers derived from cholesteryl 4‐(10‐undecylen‐1‐yloxy)‐4′‐ethoxybenzoate and phenyl 4,4′‐bis(10‐undecylen‐1‐yloxybenzoyloxy‐p‐ethoxybenzoate) was synthesized. The chemical structures of the monomers were confirmed by elemental analyses, Fourier transform infrared, and 1H NMR and 13C NMR spectra. The mesomorphic properties of elastomers were investigated with differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the content of the crosslinking unit on the phase behavior of the elastomers was examined. Monomer M1 showed a cholesteric phase, and M2 displayed smectic and nematic phases. The elastomers containing <15 mol % of the crosslinking units revealed reversible mesomorphic phase transition, wide mesophase temperature ranges, and high thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3315–3323, 2005  相似文献   

10.
The synthesis of two vinyl‐terminated side‐chain liquid‐crystalline polyethers containing benzylideneaniline moieties as mesogenic cores was approached in two different ways: by chemically modifying poly(epichlorohydrin) with suitable mesogenic acids or by polymerizing analogous glycidyl ester or glycidyl ether derivatives. In all the conditions tested, the first approach led to materials in which the imine group was hydrolyzed. The second approach led to the desired polymers PG2a and PG2b , but only from the glycidyl ether derivatives and when the initiator was the system that combined polyiminophosphazene base t‐Bu‐P4 and 3,5‐di‐t‐butylphenol. These polymers were chemically characterized by IR and 1H and 13C NMR spectroscopies. The estimated degrees of polymerization ranged from 30 to 36. The liquid crystalline behavior of the synthesized polymers was studied by differential scanning calorimetry, polarized optical microscopy (POM) and X‐ray diffraction. Both polymers behave like liquid crystals and exhibited a single mesophase, which was recognized as a smectic C mesophase, probably with a bilayer arrangement, i.e., a smectic C2 mesophase. The crosslinking of both polymers was performed with dicumyl peroxide as initiator, which led to liquid crystalline thermosets. POM and X‐ray diffraction confirmed that the mesophase organization mantained on the crosslinked materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1877–1889, 2006  相似文献   

11.
We studied the curing processes of several series of dimeric liquid‐crystalline epoxyimine monomers with 2,4‐toluene diisocyanate (TDI) alone or with added catalytic proportions of 4‐(N,N‐dimethylamino)pyridine. We obtained isotropic materials or liquid‐crystalline thermosets with different degrees of order, which depended on the structures of the monomers. To fix ordered networks, we had to do the curing in two steps when TDI was used alone as the curing agent. However, when a tertiary amine was added in catalytic proportions, the ordered networks were fixed in just one step. In this way, we were able to fix both nematic and smectic mesophases. The significance of the polarization of the mesogen for obtaining liquid‐crystalline thermosets was demonstrated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2521–2530, 2003  相似文献   

12.
Side‐chain liquid‐crystalline‐b‐amorphous copolymers combine the thermotropic ordering of liquid crystals (LCs) with the physics of block copolymer phase segregation. In our earlier experiments, we observed that block copolymer order–order and order–disorder transitions could be induced by LC transitions. Here we report the development of a free‐energy model to understand the interplay between LC ordering and block copolymer morphology in an incompressible melt. The model considers the interaction between LC moieties, the stretching of amorphous chains from curved interfaces, interfacial surface contributions, and elastic deformation of the nematic phase. The LC block is modeled with Wang and Warner's theory, in which nematogens interact through mean‐field potentials, and the LC backbone is modeled as a wormlike chain. Free energy is estimated for various morphologies: homogeneous, lamellar, cylinder micelle, and spherical micelle. Phase diagrams were constructed by iteration over temperature and composition ranges. The resulting composition diagrams are highly asymmetric, and a variety of first‐order transitions are predicted to occur at the LC clearing temperature. Qualitatively, nematic deformation energies destabilize curved morphologies, especially when the LC block is in the center of the block copolymer micelle. The thermodynamics of diblocks with laterally attached, side‐on mesogens are also explored. Discussion focuses on how well the model captures experimental phenomena and how the predicted phase boundaries are affected by changes in polymer architecture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2671–2691, 2001  相似文献   

13.
The effects of different surface modifications on the adhesion of copper to a liquid‐crystalline polymer (LCP) were investigated with X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, contact‐angle measurements, and pull tests. High pull‐strength values were achieved when copper was sputter‐deposited onto plasma and reactive‐ion‐etching (RIE)‐pretreated LCP surfaces. The values were comparable to the reference pull strengths obtained with laminated copper on the LCP. The adhesion was relatively insensitive to the employed feed gas in the pretreatments. The surface characterizations revealed that for RIE and plasma treatments, the enhanced adhesion was attributable to the synergistic effects of the increased surface roughness and polar component of the surface free energy of the polymer. However, if the electroless copper deposition was performed on RIE‐ or plasma‐treated surfaces, very poor adhesion was measured. Good adhesion between the LCP substrate and electrolessly deposited copper was achieved only in the case of wet‐chemical surface roughening as a result of the creation of a sufficient number of mechanical interlocking sites, together with a significant loss of oxygen functionalities, on the surface. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 623–636, 2003  相似文献   

14.
15.
Conjugated polymers consisting of pyrrole or an N‐substituted pyrrole bridged by methine with a mesogenic group were synthesized. Chemical structures of the products were confirmed with IR, NMR, UV–visible (UV–vis) spectroscopy, and gel permeation chromatography analysis. Liquid crystallinity was examined with differential scanning calorimetry measurements and polarizing optical microscopy observations. Liquid crystal domains of the polymer were macroscopically oriented in one direction by an external magnetic force (10 Tesla). The polymer orientation was confirmed by optical microscopy and X‐ray analysis. One of the polymers exhibited a striated fan‐shaped texture when observed with a polarizing optical microscope. This is attributed to the formation of a chiral smectic C (SmC*) phase, which is a property of ferroelectricity. Spontaneous polarization of the polymer occurred at 110 nC/cm2. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 616–629, 2005  相似文献   

16.
Ferrocene‐containing polyphosphate and phosphonate esters were synthesized by the solution polycondensation method. The structure of the polymers was confirmed using various spectroscopic techniques. The formation of two types of chain blocks was confirmed by 31P NMR spectroscopy. Hot stage optical polarized microscope (HOPM) analysis revealed that all the polymers have a liquid–crystalline property. The char yields of the synthesized similar polymers were much higher than those of nonphosphorus polymers already reported in the literature. DSC analysis confirmed our predictions over the liquid–crystalline property, glass‐transition temperature, isotropization temperature, and thermal stability of the polymers. The effects of substitution on the side chain, structure of the liquid‐–crystalline phase, and thermal stability of the polymers have also been discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2396–2403, 2001  相似文献   

17.
New semi‐rigid thermotropic liquid crystalline (LC) polyesters containing a twin biphenyl analogue of 1,3,4‐thiadiazole in the main chain were prepared by melt polycondensation of the bismethyl ester derivative of twin 2‐phenyl‐1,3,4‐thiadiazole having a decamethylene segment in the central part with three aliphatic diols. The polymer with an octamethylene segment forms a monotropic nematic phase and those with decamethylene and dodecamethylene segments form enantiotropic smectic phases, although their LC states are unstable. The melting and isotropization temperatures decrease with increasing length of alkylene spacers.  相似文献   

18.
The phase‐separation kinetics of liquid‐crystalline polymer/flexible polymer blends was studied by the coupled time‐dependent Ginzberg–Landau equations for compositional order parameter ? and orientational order parameter Sij. The computer simulations of phase‐separated structures of the blends were performed by means of the cell dynamical system in two dimensions. The compositional ordering processes of phase separation are demonstrated by the time evolution of ?. The influence of orientational ordering on compositional ordering is discussed. The small‐angle light scattering patterns are numerically reproduced by means of the optical Fourier transformation of spatial variation of the polarizability tensor αij, and the azimuthal dependence of the scattering intensity distribution is interpreted. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2915–2921, 2001  相似文献   

19.
Using fluorescence spectroscopy, we investigated intermolecular interaction between mesogenic units in a thermotropic main‐chain LC polyester, P(HBA73/HNA27), containing oxybenzoate (HBA) and oxynaphthoate (HNA) mesogenic units. It is known that P(HBA73/HNA27), which has a high molecular weight, shows second harmonic generation (SHG) activity. P(HBA73/HNA27) showed fluorescence at 410 nm and 430 nm, originating from two kinds of intermolecular interaction. Fluorescence with a peak at 410 nm comes from the ground‐state complex between partially overlapping naphthoate units or between naphthoate and oxybenzoate units whose interaction is weak. Fluorescence at 430 nm comes from the ground‐state complex between fully overlapping naphthoate units whose interaction is strong. The relative fluorescence intensity for 430 nm compared to 410 nm increases with increases in inherent viscosity, ηinh, of P(HBA73/HNA27), the composition ratio of HNA/HBA, and temperature. The fluorescence intensity ratio, I430/I410, of P(HBA73/HNA27) shows the same inherent‐viscosity dependence with its sudden increase at ηinh = 1.4 ∽ 2.2 dL/g as its SHG activity does, supporting the polar structure and uniformity of LC orientation of the present LC polyester. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2922–2928, 2000  相似文献   

20.
Three series of semiflexible and rigid main‐chain polyesters containing photoreactive mesogenic units derived from p‐phenylenediacrylic acid (PDA) and cinnamic acid have been synthesized by high‐temperature polycondensation. The thermal and mesomorphic properties of the polymers have been determined. The photochemical behavior of polymer P‐[1]‐T, which contains a PDA unit, has been studied both in solution and in films. In solution, [2+2] photocycloaddition, E/Z photoisomerization, and photo‐Fries rearrangement can take place. In contrast, the dominant process in spin‐coated films is the [2+2] photocycloaddition reaction, which causes crosslinking of the polymer. In films, the photochemistry and induction of anisotropy are strongly influenced by the aggregation of the PDA phenylester unit. A dichroism of about 0.2 has been induced in films by irradiation with linearly polarized UV light, and thus the capability of these films to induce optical anisotropy and align liquid crystals has been demonstrated. Liquid‐crystalline cells have been made with polarized irradiated films of P‐[1]‐T as aligning layers. A commercial liquid‐crystalline mixture has been used for this study, and a similar liquid‐crystalline order determined by polarized Fourier transform infrared to a commercial cell with rubbed polyimide as an aligning layer has been detected. Because of crosslinking of the irradiated P‐[1]‐T photoaligning layer, the photoinduced anisotropy is stable at high temperatures, and the liquid‐crystalline molecules are insoluble in the irradiated polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4907–4921, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号