首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We apply the hp ‐version of the boundary element method (BEM) for the numerical solution of the electric field integral equation (EFIE) on a Lipschitz polyhedral surface Γ. The underlying meshes are supposed to be quasi‐uniform triangulations of Γ, and the approximations are based on either Raviart‐Thomas or Brezzi‐Douglas‐Marini families of surface elements. Nonsmoothness of Γ leads to singularities in the solution of the EFIE, severely affecting convergence rates of the BEM. However, the singular behavior of the solution can be explicitly specified using a finite set of functions (vertex‐, edge‐, and vertex‐edge singularities), which are the products of power functions and poly‐logarithmic terms. In this article, we use this fact to perform an a priori error analysis of the hp ‐BEM on quasi‐uniform meshes. We prove precise error estimates in terms of the polynomial degree p, the mesh size h, and the singularity exponents. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012  相似文献   

2.
The article considers a three‐dimensional crack problem in linear elasticity with Dirichlet boundary conditions. The crack in this model problem is assumed to be a smooth open surface with smooth boundary curve. The hp‐version of the boundary element method with weakly singular operator is applied to approximate the unknown jump of the traction which is not L2‐regular due to strong edge singularities. Assuming quasi‐uniform meshes and uniform distributions of polynomial degrees, we prove an a priori error estimate in the energy norm. The estimate gives an upper bound for the error in terms of the mesh size h and the polynomial degree p. It is optimal in h for any given data and quasi‐optimal in p for sufficiently smooth data. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

3.
A tournament is a digraph, where there is precisely one arc between every pair of distinct vertices. An arc is pancyclic in a digraph D, if it belongs to a cycle of length l, for all 3 ≤ l ≤ |V (D) |. Let p(D) denote the number of pancyclic arcs in a digraph D and let h(D) denote the maximum number of pancyclic arcs belonging to the same Hamilton cycle of D. Note that p(D) ≥ h(D). Moon showed that h(T) ≥ 3 for all strong non‐trivial tournaments, T, and Havet showed that h(T) ≥ 5 for all 2‐strong tournaments T. We will show that if T is a k‐strong tournament, with k ≥ 2, then p(T) ≥ 1/2, nk and h(T) ≥ (k + 5)/2. This solves a conjecture by Havet, stating that there exists a constant αk, such that p(T) ≥ αk n, for all k‐strong tournaments, T, with k ≥ 2. Furthermore, the second results gives support for the conjecture h(T) ≥ 2k + 1, which was also stated by Havet. The previously best‐known bounds when k ≥ 2 were p(T) ≥ 2k + 3 and h(T) ≥ 5. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

4.
In this paper, we develop an hp‐adaptive procedure for the numerical solution of general, semilinear elliptic boundary value problems in 1d, with possible singular perturbations. Our approach combines both a prediction‐type adaptive Newton method and an hp‐version adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully hp‐adaptive Newton–Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Let h : ? → ? be a computable function. A real number x is called h‐monotonically computable (h‐mc, for short) if there is a computable sequence (xs) of rational numbers which converges to x h‐monotonically in the sense that h(n)|xxn| ≥ |xxm| for all n andm > n. In this paper we investigate classes hMC of h‐mc real numbers for different computable functions h. Especially, for computable functions h : ? → (0, 1)?, we show that the class hMC coincides with the classes of computable and semi‐computable real numbers if and only if Σi∈?(1 – h(i)) = ∞and the sum Σi∈?(1 – h(i)) is a computable real number, respectively. On the other hand, if h(n) ≥ 1 and h converges to 1, then hMC = SC (the class of semi‐computable reals) no matter how fast h converges to 1. Furthermore, for any constant c > 1, if h is increasing and converges to c, then hMC = cMC . Finally, if h is monotone and unbounded, then hMC contains all ω‐mc real numbers which are g‐mc for some computable function g. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Let M be a compact manifold of dimension n, P=P(h) a semiclassical pseudodifferential operator on M, and u=u(h) an L 2 normalized family of functions such that P(h)u(h) is O(h) in L 2(M) as h↓0. Let HM be a compact submanifold of M. In a previous article, the second-named author proved estimates on the L p norms, p≥2, of u restricted to H, under the assumption that the u are semiclassically localized and under some natural structural assumptions about the principal symbol of P. These estimates are of the form Ch δ(n,k,p) where k=dim H (except for a logarithmic divergence in the case k=n−2, p=2). When H is a hypersurface, i.e., k=n−1, we have δ(n,n−1, 2)=1/4, which is sharp when M is the round n-sphere and H is an equator.  相似文献   

7.
In this paper we show that every variational solution of the steady‐state Boussinesq equations ( u , p, θ) with thermocapillarity effect on the surface of the liquid has the following regularity: u ∈ H2(Ω)2, pH1(Ω), θH2(Ω) under appropriate hypotheses on the angles of the ‘2‐D’ container (a cross‐section of the 3‐D container in fact) and of the horizontal surface of the liquid with the inner surface of the container. The difficulty comes from the boundary condition on the surface of the liquid (e.g. water) which modelizes the thermocapillarity effect on the surface of the liquid (equation (68.10) of Levich [7]). More precisely we will show that u ∈ P22(Ω)2 and that θP22(Ω), where P22(Ω) denotes the usual Kondratiev space. This result will be used in a forthcoming paper to prove convergence results for finite element methods intended to compute approximations of a non‐singular solution [1] of this problem. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we study the existence of positive solutions for the following Sturm–Liouville‐like four‐point singular boundary value problem (BVP) with p‐Laplacian where ?p(s)=|s|p?2 s, p>1, f is a lower semi‐continuous function. Using the fixed‐point theorem of cone expansion and compression of norm type, the existence of positive solution and infinitely many positive solutions for Sturm–Liouville‐like singular BVP with p‐Laplacian are obtained. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we study the existence of infinitely many solutions to p‐Kirchhoff‐type equation (0.1) where f(x,u) = λh1(x)|u|m ? 2u + h2(x)|u|q ? 2u,a≥0,μ > 0,τ > 0,λ≥0 and . The potential function verifies , and h1(x),h2(x) satisfy suitable conditions. Using variational methods and some special techniques, we prove that there exists λ0>0 such that problem 0.1 admits infinitely many nonnegative high‐energy solutions provided that λ∈[0,λ0) and . Also, we prove that problem 0.1 has at least a nontrivial solution under the assumption f(x,u) = h2|u|q ? 2u,p < q< min{p*,p(τ + 1)} and has infinitely many nonnegative solutions for f(x,u) = h1|u|m ? 2u,1 < m < p. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A tournament is an orientation of the edges of a complete graph. An arc is pancyclic in a tournament T if it is contained in a cycle of length l, for every 3 ≤ l ≤ |T|. Let p(T) denote the number of pancyclic arcs in a tournament T. In 4 , Moon showed that for every non‐trivial strong tournament T, p(T) ≥ 3. Actually, he proved a somewhat stronger result: for any non‐trivial strong tournament h(T) ≥ 3 where h(T) is the maximum number of pancyclic arcs contained in the same hamiltonian cycle of T. Moreover, Moon characterized the tournaments with h(T) = 3. All these tournaments are not 2‐strong. In this paper, we investigate relationship between the functions p(T) and h(T) and the connectivity of the tournament T. Let pk(n) := min {p(T), T k‐strong tournament of order n} and hk(n) := min{h(T), T k‐strong tournament of order n}. We conjecture that (for k ≥ 2) there exists a constant αk> 0 such that pk(n) ≥ αkn and hk(n) ≥ 2k+1. In this paper, we establish the later conjecture when k = 2. We then characterized the tournaments with h(T) = 4 and those with p(T) = 4. We also prove that for k ≥ 2, pk(n) ≥ 2k+3. At last, we characterize the tournaments having exactly five pancyclic arcs. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 87–110, 2004  相似文献   

11.
We study second‐order finite‐volume schemes for the non‐linear hyperbolic equation ut(x, t) + div F(x, t, u(x, t)) = 0 with initial condition u0. The main result is the error estimate between the approximate solution given by the scheme and the entropy solution. It is based on some stability properties verified by the scheme and on a discrete entropy inequality. If u0LBVloc(ℝN), we get an error estimate of order h1/4, where h defines the size of the mesh. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
We show that the four‐cycle has a k‐fold list coloring if the lists of colors available at the vertices satisfy the necessary Hall's condition, and if each list has length at least ?5k/3?; furthermore, the same is not true with shorter list lengths. In terms of h(k)(G), the k ‐fold Hall number of a graph G, this result is stated as h(k)(C4)=2k??k/3?. For longer cycles it is known that h(k)(Cn)=2k, for n odd, and 2k??k/(n?1)?≤h(k)(Cn)≤2k, for n even. Here we show the lower bound for n even, and conjecture that this is the right value (just as for C4). We prove that if G is the diamond (a four‐cycle with a diagonal), then h(k)(G)=2k. Combining these results with those published earlier we obtain a characterization of graphs G with h(k)(G)=k. As a tool in the proofs we obtain and apply an elementary generalization of the classical Hall–Rado–Halmos–Vaughan theorem on pairwise disjoint subset representatives with prescribed cardinalities. © 2009 Wiley Periodicals, Inc. J Graph Theory 65: 16–34, 2010.  相似文献   

13.
In this article, we develop a parameter uniform numerical method for a class of singularly perturbed parabolic equations with a multiple boundary turning point on a rectangular domain. The coefficient of the first derivative with respect to x is given by the formula a0(x, t)xp, where a0(x, t) ≥ α > 0 and the parameter p ∈ [1,∞) takes the arbitrary value. For small values of the parameter ε, the solution of this particular class of problem exhibits the parabolic boundary layer in a neighborhood of the boundary x = 0 of the domain. We use the implicit Euler method to discretize the temporal variable on uniform mesh and a B‐spline collocation method defined on piecewise uniform Shishkin mesh to discretize the spatial variable. Asymptotic bounds for the derivatives of the solution are established by decomposing the solution into smooth and singular component. These bounds are applied in the convergence analysis of the proposed scheme on Shishkin mesh. The resulting method is boundary layer resolving and has been shown almost second‐order accurate in space and first‐order accurate in time. It is also shown that the proposed method is uniformly convergent with respect to the singular perturbation parameter ε. Some numerical results are given to confirm the predicted theory and comparison of numerical results made with a scheme consisting of a standard upwind finite difference operator on a piecewise uniform Shishkin mesh. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1143–1164, 2011  相似文献   

14.
It is well known that every tournament contains a Hamiltonian path, which can be restated as that every tournament contains a unary spanning tree. The purpose of this article is to study the general problem of whether a tournament contains a k‐ary spanning tree. In particular, we prove that, for any fixed positive integer k, there exists a minimum number h(k) such that every tournament of order at least h(k) contains a k‐ary spanning tree. The existence of a Hamiltonian path for any tournament is the same as h(1) = 1. We then show that h(2) = 4 and h(3) = 8. The values of h(k) remain unknown for k ≥ 4. © 1999 John & Sons, Inc. J Graph Theory 30: 167–176, 1999  相似文献   

15.
Under what conditions is it true that if there is a graph homomorphism GHGT, then there is a graph homomorphism HT? Let G be a connected graph of odd girth 2k + 1. We say that G is (2k + 1)‐angulated if every two vertices of G are joined by a path each of whose edges lies on some (2k + 1)‐cycle. We call G strongly (2k + 1)‐angulated if every two vertices are connected by a sequence of (2k + 1)‐cycles with consecutive cycles sharing at least one edge. We prove that if G is strongly (2k + 1)‐angulated, H is any graph, S, T are graphs with odd girth at least 2k + 1, and ?: GHST is a graph homomorphism, then either ? maps G□{h} to S□{th} for all hV(H) where thV(T) depends on h; or ? maps G□{h} to {sh}□ T for all hV(H) where shV(S) depends on h. This theorem allows us to prove several sufficient conditions for a cancelation law of a graph homomorphism between two box products with a common factor. We conclude the article with some open questions. © 2008 Wiley Periodicals, Inc. J Graph Theory 58:221‐238, 2008  相似文献   

16.
The paper is concerned with existence results for positive solutions and maximal positive solutions of singular mixed boundary value problems. Nonlinearities h(t;x;y) in differential equations admit a time singularity at t=0 and/or at t=T and a strong singularity at x=0.  相似文献   

17.
We study the limit behaviour of solutions of with initial data k δ 0 when k → ∞, where h is a positive nondecreasing function and p > 1. If h(r) = r β , βN(p − 1) − 2, we prove that the limit function u is an explicit very singular solution, while such a solution does not exist if β ≤  N(p − 1) − 2. If lim inf r→ 0 r 2 ln (1/h(r))  >  0, u has a persistent singularity at (0, t) (t ≥  0). If , u has a pointwise singularity localized at (0, 0).  相似文献   

18.
This article derives from first principles a definition of equivalence for higher‐dimensional Hadamard matrices and thereby a definition of the automorphism group for higher‐dimensional Hadamard matrices. Our procedure is quite general and could be applied to other kinds of designs for which there are no established definitions for equivalence or automorphism. Given a two‐dimensional Hadamard matrix H of order ν, there is a Product Construction which gives an order ν proper n‐dimensional Hadamard matrix P(n)(H). We apply our ideas to the matrices P(n)(H). We prove that there is a constant c > 1 such that any Hadamard matrix H of order ν > 2 gives rise via the Product Construction to cν inequivalent proper three‐dimensional Hadamard matrices of order ν. This corrects an erroneous assertion made in the literature that ”P(n)(H) is equivalent to “P(n)(H′) whenever H is equivalent to H′.” We also show how the automorphism group of P(n)(H) depends on the structure of the automorphism group of H. As an application of the above ideas, we determine the automorphism group of P(n)(Hk) when Hk is a Sylvester Hadamard matrix of order 2k. For ν = 4, we exhibit three distinct families of inequivalent Product Construction matrices P(n)(H) where H is equivalent to H2. These matrices each have large but non‐isomorphic automorphism groups. © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 507–544, 2008  相似文献   

19.
For a fixed multigraph H, possibly containing loops, with V(H) = {h1,…, hk}, we say a graph G is H‐linked if for every choice of k vertices v1,…,vk in G, there exists a subdivision of H in G such that vi represents hi (for all i). An H‐immersion in G is similar except that the paths in G, playing the role of the edges of H, are only required to be edge disjoint. In this article, we extend the notion of an H‐linked graph by determining minimum degree conditions for a graph G to contain an H‐immersion with a bounded number of vertex repetitions on any choice of k vertices. In particular, we extend results found in [2,3,5]. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 245–254, 2008  相似文献   

20.
A finite group G is called p i -central of height k if every element of order p i of G is contained in the k th -term ζ k (G) of the ascending central series of G. If p is odd, such a group has to be p-nilpotent (Thm. A). Finite p-central p-groups of height p − 2 can be seen as the dual analogue of finite potent p-groups, i.e., for such a finite p-group P the group P1(P) is also p-central of height p − 2 (Thm. B). In such a group P, the index of P p is less than or equal to the order of the subgroup Ω1(P) (Thm. C). If the Sylow p-subgroup P of a finite group G is p-central of height p − 1, p odd, and N G (P) is p-nilpotent, then G is also p-nilpotent (Thm. D). Moreover, if G is a p-soluble finite group, p odd, and P ∈ Syl p (G) is p-central of height p − 2, then N G (P) controls p-fusion in G (Thm. E). It is well-known that the last two properties hold for Swan groups (see [11]).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号